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INTRODUCTION

Overview
The subject of decompression theory in general is the study of pressure changes in blood and tissues. And today,

we still do not know all the answers, maybe even less, the questions. But for diving applications, we need regimens and
protocols to stage diver ascents on any given breathing mixture, and that is the focus of this short paper. Deterministic
models are broadly catergorized as dissolved gas (Haldane) or dual phase (dissolved plus free gas), and both are de-
scribed and contrasted. Probabilistic models fold risk parameters over statistical data in maxinum likelihood, employing
metrics and variables computed directly in deterministic models. The statistics associated with decompression illness
(DCI) are also discussed.

Pressure And Decompression Modeling
The physics, biology, engineering, physiology, medicine, and chemistry of diving center on pressure, and pressure

changes. The average individual is subjected to atmospheric pressure swings of 3% at sea level, as much as 20% a
mile in elevation, more at higher altitudes, and all usually over time spans of hours to days. Divers and their equipment
can experience compressions and decompressions orders of magnitude greater, and within considerably shorter time
scales. While the effects of pressure change are readily quantified in physics, chemistry, and engineering applications,
the physiology, medicine, and biology of pressure changes in living systems are much more complicated.

Increases in pressure with increasing depth impose many of the limitations in diving, applying equally well to the
design of equipment. Early divers relied on their breathholding ability, while later divers used diving bells. Surface
supplied air and SCUBA are rather recent innovations. With increasing exposure times and depths, divers encountered
physiological and medical problems constraing activity, with decompression illness (DCI) perhaps the most noteworthy.
By the 1880s, bubbles were noted in animals subjected to pressure reduction. By the 1900s, bubbles were postulated as
the cause of DCI in divers and caisson workers.

Within that postulate and drven by the need to optimize diver and aviator safety and time, decompression modeling
has consolidated early rudimentary schedules into present more sophisticated tables and models. As basic knowledge
and understanding of the biophysical effects of pressure change increase, so will the validity, reliability, and range of
applicable models and algorithms used to stage diver ascents.

GAS DYNAMICS AND PHASE TRANSFER

Ideal Gases
Air is a mixture of inert and metabolic gases, composed of nitrogen and oxygen mainly, with variable amounts of

carbon dioxide, water vapor, ozone, sulfur dioxide, and nitrogen dioxide, and fixed trace amounts of xenon, helium,
krypton, argon, methane, nitrous oxide, hydrogen, and neon. By volume, air is 78.1% nitrogen, 20.9% oxygen, and
1% everything else. Over nominal pressure and temperature ranges encountered in the Earth’s atmosphere, air can be
treated as an ideal, or dilute, gas.

Ideal gas molecules occupy no space, do not interact, scatter elastically from each other, and cannot be distorted upon
collision, in short, act as vanishingly small, perfectly elastic, hard spheres in constant random motion from collisions.
Real gases, in the limit of very large confining volumes, all behave like ideal gases, as well as over select ranges
of pressure, temperature, and density. Simple monatomic (one atom molecules) and diatomic (two atom molecules)
gases and mixtures, such as air, at room temperatures and atmospheric pressures are considered ideal, and satisfy an
equation-of-state (EOS) linking pressure P, volume, V , and and temperature, T , of the form,

PV � nRT (1)
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with n the number of moles of gas, and R the universal gas constant (8�317 joule�mole�K o). Temperature is measured
in absolute, or Kelvin (Ko), units. In conservative processes, n is constant and changes in the state variables, P, V, and
T, are linked to each other by the P�V�T relationship. If each variable is alternatively held fixed, we get three well
known ideal gas law corollaries,

PV � γT �Boyle�s law� � (2)

P
T

� γV �Amonton�s law� � (3)

V
T

� γP �Charles� law� � (4)

with γT � nRT, γV � nR�V, and γP � nR�P all constant. The relationships connect any number of arbitrary changes
of state for constant temperature, volume, or pressure, respectively. In a mixture of ideal gases, the total pressure is
the sum of component gas partial pressures, intuitively obvious, but also known as Dalton’s law. Denoting gas partial
pressures, p, the total pressure, P, is given by,

P�
J

∑
j�1

pj � (5)

with pj the partial pressure of the j th gas species in a J component mixture.
Temperatures, which really measure average kinetic energy of gas molecules in the ensemble, are measured in

Centigrade (Co), Fahrenheit (Fo), Kelvin (Ko), and Rankine (Ro) degree units, related by,

Fo �
9
5

Co�32 � (6)

Ko �Co�273 � (7)

Ro � Fo�460 � (8)

Temperature
Temperature is a measure of hotness or coldness. But more particularly, temperature is a measure of the average

kinetic energy of the molecular ensemble comprising the object, also called the internal energy. For an ideal gas, the
mean molal kinetic energy, ε̄, satisfies the Boltzmann relationship,

ε̄ �
3
2

kT � (9)

with k Boltzmann’s constant �1�38� 10�23 j�gmole Ko�, and T the absolute temperature. The first temperature mea-
suring devices, employing displaced air volumes to define hotness of coldness according to the pronunciations of the
instrument maker, were called thermometers in the 1600s. The liquid sealed in glass thermometers, based on thermal
expansion and contraction, appeared in the latter half of the 1600s.

Use of temperature as a measurement of hotness or coldness is based on two requirements, that is, a universal
agreement on calibration and scale, and technology sufficient to produce reliable instruments giving identical readings
under the same conditions. Wide adoption of the Fahrenheit scale, F o, was promoted by the trusty mercury (in glass)
thermometers constructed in Danzig, by Fahrenheit, in the early 1700s. The scale was based on two fixed points,
namely, the melting point of ice and the temperature of a healthy human body (later replaced by the boiling point of
water). Celsius, at Uppsala, around the mid 1700s, introduced the Celsius (Centigrade) scale, C o, on which the degree
was 1�100 of the interval between the freezing and boiling points of water. Later, in the 1800s, Kelvin introduced the
absolute scale, Ko, based on the second law of thermodynamics and entropy, ultimately linked by statistical mechanics to
an absolute zero, that is, a temperature at which random molecular motion ceases. By 1887, the international community
adopted the constant volume hydrogen gas thermometer as defining measurements on the Kelvin scale.

Kelvin �Ko�, Centigrade �Co�, Rankine �Ro�, and Fahrenheit �Fo) temperatures are linearily scaled, and are easily
related,

Fo �
9
5

Co�32 � (10)

Ko �Co�273 � (11)

Ro � Fo�460 � (12)

Kelvin and Rankine temperatures are employed in the gas laws.
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First And Second Laws
The first law of thermodynamics is really a statement of conservation of energy in any system. Denoting the internal

energy of the system, U , the net heat flow into the system, Q, and the work, W, done on the system, the first law requires
that infinitesimal changes dQ, dU, and dW satisfy,

dU � dQ�dW � (13)

The internal energy of an ideal gas is only dependent on temperature, and that is a good approximation in most other
real gases near standard temperature and pressure. (32 F o, and 1 atm). Denoting the number of molecules of the gas,
N, and the number of moles, n, with R the gas constant and k Boltzmann’s constant, we have

dU � Nε̄dT �
3
2

NkdT�
3
2

nRdT � (14)

as a measure of the internal energy change, dU, for temperature change, dT. Heat flow, dQ, into or out of the sys-
tem occurs through conduction, convection, or radiation. Mechanical work, dW, performed on, or by, the system is
associated with volume change, dV, under pressure, P,

dW� PdV � (15)

so that,
dU � dQ�PdV � (16)

in a mechanical system. We do not live in a reversible world, that is to say, processes usually proceed in only one
direction. Collectively, the directionality ascribed to physical processes is termed entropy.

From experience, we know that some processes satisfying the first law (conservation of energy) never occur. For
instance, a piece of rock resting on the floor will never cool itself down and jump up to the ceiling, thereby converting
heat energy into potential energy. The second law defines a state directionalvariable, S, called the entropy, so that for
any process, the heat transferred, dQ, is given by,

dQ� TdS (17)

dS � 0 � (18)

The requirement that the entropy change, dS, associated with the process must be greater than or equal to zero imparts
directionality to the process, or the process is forbidden. Put another way by Kelvin, there exist no thermodynamic pro-
cesses, nor transformations, that extract heat from a reservoir and convert it entirely into work. Dissipative mechanisms,
such as friction and viscosity, prevent a reduction in system entropy for any process. Processes for which the entropy
change is zero,

dS� 0 � (19)

are termed reversible, or isentropic, represent an idealization of physical reality. Processes in which no heat is ex-
changed by the system are called adiabatic, that is,

dQ� 0 � (20)

Combining the first and second laws, and considering only mechanical work,

dW� PdV � (21)

we see that,
dU � TdS�PdV (22)

Simple energy considerations applied to the steady flow of a fluid (gas or liquid) in system able to exchange heat
and do external work, such as a steam engine, refrigerator, turbine, compressor, and scuba regulator, provide a simple
means to relate temperature, internal energy, kinetic and potential energy, and pressure changes to external work and
heat. The simple, yet powerful, relationships detailed above can be applied to air and fluid flows in diving systems, such
as regulators, compressors, tanks, hoses, and gauges to yield rough estimates of pressures, temperatures, heat, and work.
Actual flow patterns can be extremely complicated, requiring numerical solution on high speed computers, especially
high pressure flows.
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Dissolved Phase Transfer
All gases dissolve in all liquids, but actual solubilities range over many orders of magnitude. Considering inert

gases at room temperature, for illustration, the solubility of xenon in n-octane, a hydrocarbon liquid, is 470 times that of
helium in water. Gas solubilities can vary much more for complex solutes and solvents. The solubility of the anesthetic
gas halothane in olive oil is more than 106 times the solubility of common gases in liquid mercury. Inert gases such as
helium and nitrogen are readily soluble in tissue and blood, and their solubility can fuel bubble growth with reduction
in ambient pressure, a concern for decompressing divers.

Denoting the ambient partial pressure of a gas, p, and its solubility, S, in a liquid, the relative concentration of the
dissolved gas component, c, is given by Henry’s law,

c� Sp� (23)

The corresponding tension, or dissolved gas partial pressure, is also p at equilibrium. By convention, partial pressures
usually refer to the free gas phase, while tensions refer to the dissolved gas phase, though some folks use them inter-
changeably. When there exist differences, or gradients, between gas partial pressures and/or tensions across regions of
varying concentration or solubility, gases will diffuse until partial pressures are equal, in short, move from regions of
higher partial pressures to regions of lower partial pressures, regardless of the phases (free or dissolved) of the compo-
nents. This movement is the crux of the decompression problem in divers and aviators, and modeling this movement is
central to the formulation of decompression tables and dive computer algorithms.

Gas is driven across the tissue-blood interface by the gradient, but the rate at which bulk tissue transfers gas also
depends on the blood flow rate and the degree of vascularity. Then both blood perfusion rate and gas diffusion rate
contribute to the overall transfer process.

Perfusion Controlled Transport
Exchange of dissolved tissue and blood gas, controlled by blood flow rates across regions of varying concentration

or solubility, is driven by the local tissue-blood gradient, that is, the difference between the arterial blood tension, p a,
and the instantaneous tissue tension, p, assuming that blood flow rates are considerably slower than gas diffusion rates
across the regions. Such behavior is modeled in time, t, by simple classes of exponential response functions, bounded
by pa and the initial value of p, denoted pi . These multitissue functions satisfy a differential per f usionrate equation,

∂p
∂t

��λ �p� pa� � (24)

and take the form, tracking both dissolved gas buildup and elimination symmetrically,

p� pa � �pi� pa� exp��λt� � (25)

λ �
�6931

τ
� (26)

with perfusion constant, λ, defined by the tissue halftime, τ. Compartments with 2, 5, 10, 20, 40, 80, 120, 180, 240,
360, 480, and 720 minute halftimes, τ, are employed, and halftimes are independent of pressure.

In a series of dives or multiple stages, pi and pa represent extremes for each stage, or more precisely, the initial
tension and the arterial tension at the beginning of the next stage. Stages are treated sequentially, with finishing tensions
at one step representing initial tensions for the next step, and so on. Exposures are controlled through critical tensions,
M, such that, throughout the dive,

p�M � (27)

Diffusion Controlled Transport
Exchange of dissolved tissue and blood gas, controlled by diffusion across regions of varying concentration or

solubility, is also driven by the local tissue-blood gradient, but solutions to the diffusion equation control transport. In
simple planar geometry, the diffusion equation can be cast,

D
∂2 p
∂x2 �

∂p
∂t

� (28)

with D the diffusion coefficient. As in the perfusion case, solutions depend on initial values, and also on boundary
conditions. Tissue is separated into intravascular and extravascular regions for application of boundary conditions, with

4



the tissue tension, p, equal to the arterial tension, pa, at the tissue-blood interface. Solving and applying initial and
boundary conditions, and then averaging the solutions over the spatial region, of thickness, l , there obtains,

p� pa � �pi� pa�
8
π2

∞

∑
n�1

1
�2n�1�2 exp��α2

2n�1Dt� � (29)

with,

α2n�1 �
�2n�1�π

l
� (30)

A decay constant, κ, fitted to exposure data, is related to the diffusion coefficient, D,

κ �
π2D
l2 � �007928 min�1 � (31)

in the exponential expansion, and plays a similar role to λ in the perfusion controlled case. The diffusion expansion
looks like a weighted sum of multitissue perfusion functions with decay constants, �2n�1� 2 κ. A diffusion equivalent
halftime, ω, is simply defined,

ω�
�6931

κ
� 87�4 min � (32)

so that halftimes, ω2n�1, in the weighted expansion, are given by,

ω2n�1 �
ω

�2n�1�2 � (33)

As before, pi and pa represent extremes for each stage. Critical gradients, G, control diving through the constraint,

p� pa�G � (34)

Free Phase Transfer
To satisfy thermodynamic laws, bubbles in blood and tissue assume spherical shapes in the absence of external or

mechanical (distortion) pressures. Bubbles entrain free gases because of a thin film, exerting surface tension pressure on
the gas, of magnitude, 2γ�r , with γ the Laplacian surface tension and r the bubble radius. Hydrostatic pressure balance
requires that the pressure inside the bubble, Π,

Π �
J

∑
j�1

πj � (35)

with πj bubble partial pressures of component (free) gases, exceed ambient pressure, P, by the surface tension pressure,
2γ�r ,

Π � P�
2γ
r

� (36)

At small radii, surface tension pressure is greatest, and at large radii, surface tension pressure is least.
Gases will also diffuse into or out of a bubble according to differences in gas partial pressures inside and outside the

bubble, whether in free or dissolved phases outside the bubble. In the former case, the gradient is termed f ree� f ree,
while in the latter case, the gradient is termed f ree�dissolved. Unless the surface tension, γ, is identically zero, there
is always a gradient tending to force gas out of the bubble, thus making the bubble collapse on itself because of surface
tension pressure. If surrounding external pressures on bubbles change in time, however, bubbles may grow or contract.

Bubbles grow or contract according to the strength of the free-free or free-dissolved gradient, and it is the latter case
which concerns divers under decompression. The radial rate at which bubbles grow or contract is roughly given by,

∂r
∂t

�
DS
r
�Q�Π� � (37)

with D and S tissue diffusivity and solubility, and total tissue tension, Q, the sum of component dissolved gas tensions,

Q�
J

∑
j�1

pj � (38)
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as before. A critical radius, rc, separating growing from contracting bubbles is given by,

rc �
2γ

Q�P
(39)

and bubbles with radius r � rc will grow, while bubbles with radius r � r c will contract. Limiting bubble growth and
impact upon nerves and circulation are issues when decompressing divers and aviators. The interplay between tissue
tension and bubble growth is further complicated with ascent, since ambient pressure changes in time (depending on
ascent rate).

CRITICAL TENSIONS AND PHASE VOLUMES

Critical Tensions
Bubbles can form in tissue and blood when ambient pressure drops below tissue tensions, according to the rules

of established phase mechanics. Trying to track free and dissolved gas buildup and elimination in tissue and blood,
especially their interplay, is extremely complex, beyond the capabilities of even supercomputers. But safe computational
prescriptions are necessary in the formulation of dive tables and digital meter algorithms. The simplest way to stage
decompression, following extended exposures to high pressure with commensurate dissolved gas buildup, is to limit
tissue tensions. Historically, Haldane first employed that approach, and it persists today.

To maximize the rate of uptake or elimination of dissolved gases, the gradient, simply the difference between p i

and pa, is maximized by pulling the diver as close to the surface as possible. Exposures are limited by requiring that the
perfusion-dominated tissue tensions, p, never exceed criticality, M, for instance, written for each tissue compartment in
the US Navy approach employing 5, 10, 20, 40, 80, and 120 minutetissue halftimes, τ,

M � M0 �∆Md � (40)

with,
M0 � 152�7τ�1�4 � (41)

∆M � 3�25τ�1�4 � (42)

as a function of depth, d, for ∆M the change per unit depth.
Surfacing values, M0, are principal concerns in nonstop diving, while values at depth, ∆Md, concern decompression

diving. In both cases, the staging regimen tries to pull the diver as close to the surface as possible, in as short a time
as possible. By contrast, free phase (bubble) elimination gradients, as seen, increasewith depth, directly opposite
to dissolved gas elimination gradients which decreasewith depth. In actuality, decompression is a playoff between
dissolved gas buildup and free phase growth, tempered by body ability to eliminate both. But dissolved gas models
cannot handle both, so there are problems when extrapolating outside tested ranges.

In absolute pressure units, the corresponding critical gradient, G, is given by,

G�
M
�79
�P� 1�27 M�P � (43)

with P ambient pressure, and M critical nitrogen pressure. In bubble theories, supersaturation is limited by the critical
gradient, G. In decompressed gel experiments, Strauss suggested that G� 20 f swat ambient pressures less than a few
atmospheres. Other studies suggest, 14�G� 30 f sw, as a range of critical gradients (G-values).

In diffusion-dominated approaches, the tissue tension is often limited by a single, depth-dependent criterion, such
as,

M �
709 P

P�404
� (44)

a continuous parameterization lying between fixed gradient and multitissue schemes.

Controlling Tissues
Blood rich, well perfused, aqueous tissues are usually thought to be f ast (small τ), while blood poorer, scarcely-

perfused, lipid tissues are thought to be slow (large τ), though the spectrum of halftimes is not correlated with actual
perfusion rates in critical tissues. As reflected in relationship above, critical parameters are obviously larger for faster
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tissues. The range of variation with compartment and depth is not insignificant. Fast compartments control short deep
exposures, while slow compartments control long shallow, decompression, and saturation exposures.

As is well known, bounce exposures are often limited by a depth-time law of the form,

d t1�2
n �C � (45)

with tn the nonstop time limit, and 400�C� 500 f sw min1�2. One can obtain the corresponding tissue constant, λ,
controlling the exposure at depth d, for nonstop time t n, by differentiating the tissue equation with respect to depth, d,
and setting the result ,to zero. With pa � 0�79 �d�33� at sea level, there results,

1�exp��λtn� �1�2 λtn� � 0 � (46)

Corresponding critical tensions, M, are then easily obtained from the tissue equation using d, λ, and t n. In the above
case, the transcendental equation is satisfied when,

λtn � 1�25 � (47)

thus providing a means to estimate controlling tissue halftime at depth for corresponding nonstop time limits.

Time Remaining
Time remaining before a stop or surfacing, time at a stop, or surface interval before flying can all be obtained by

inverting the tissue equation. Taking the perfusion equation, and denoting the limiting critical tension at some desired
stage (lower ambient pressure), M, the initial tension , pi , and the instantaneous tension at that particular time, p, at
stage, pa, the limiting time, t, follows from,

t �
1
λ

ln

�
pi� pa

p� pa

�
(48)

as the inversion of the tissue equation in time.
The nonstop time limit, tn, follows by replacing the instantaneous tension, p, with the (limiting) critical tension, M,

that is,

tn �
1
λ

ln

�
pi� pa

M� pa

�
(49)

while time remaining, tr , at level, pa, before ascension to new level with limiting critical tension, M, is given by,

tr �
1
λ

ln

�
p� pa

M� pa

�
� (50)

with p the instantaneous tension now the initial tension. These hold for each compartment, λ. Across all compartments,
the smallest tn limits time at the present level when ascent is permitted, while the largest t r prescribes wait time at the
present level when ascent is not permitted. Table 1 lists compartment time limits using the critical tensions, M 0, for the
six compartments, τ = 5, 10, 20, 40, 80, and 120 min, that is, M 0 = 104, 88, 72, 58, 52, 51 f sw. Note the blank entries
in the Table correspond to depths less than the critical tension, so tissue loading to that critical tension is not possible.

Table 1. Compartment Time Limits At Depth.
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τ �min� 5 10 20 40 80 120
M0 � f sw� 104 88 72 58 52 51
d � f sw�

40 198 269
50 95 123 173
60 100 65 91 129
70 51 50 73 103
80 56 37 41 61 87
90 30 30 34 52 75

100 31 22 25 30 46 66
110 16 18 22 26 41 59
120 12 15 19 24 37 53
130 10 13 17 21 34 48
140 9 12 16 20 31 44
150 8 11 14 18 29 41
160 7 10 13 17 27 38
170 6 9 12 16 25 35
180 6 8 11 15 23 33
190 5 8 11 14 22 31
200 5 7 10 13 21 30

Generally, the tn are monotonically decreasing functions of depth, while t r are monotonically increasing functions
of depth, for fixed M.

Saturation Curve And Separated Phase
In elegant experiments, using both animals and humans, subjects were first saturated at various pressures, Q, then

decompressed to lower absolute pressures, P, and closely checked for bends development. Various values of Q and P
can be determined in a controlled titration, that is, by holding one variable fixed and changing the other very slightly
over times spans of a day, or more. In analyzing this saturation data, it is possible to draw a linear relationship, in the
hyperbaric regime, separating bends from no bends for ranges of P and Q. For instance, The line takes the form, in f sw,

Q� ζP� ξ � (51)

with an approximate spread over different studies, depending on statistics,

1�20� ζ � 1�40 (52)

7�5 f sw� ξ � 15�3 f sw � (53)

and a range of ambient pressures, P,
33 f sw� P� 300 f sw � (54)

In the hypobaric regime, P� 33 f sw, recent studies suggest that the air saturation curve passes through the origin
as ambient pressure drops, behavior predicted within phase models and discussed further on. Wienke deduced a general
form, in � f sw�,

Q�

�
2�37�exp

�
�

11�1
P

��
P (55)

using the permissible bubble (Doppler) excess as a phase limit point. For all exposures, 0� P�∞, the supersaturation,
Q, is bounded, with linear asymptotic behavior for large P, and zero intercept for small P. That is,

lim
P�0

Q� 2�37 P� 0 (56)

lim
P�∞

Q�

�
2�37�1�

1�11
P

�
P� 1�37 P�11�1 (57)

Hennessy and Hempleman, and later Yount and Hoffman, established the linear titration curve for the data assum-
ing that the same critical volume of released gas provokes mild attacks of decompression sickness. Such analyses
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offer explanations for changes in signs and symptoms which follow changes in the nature of the exposure to pressure.
Findings press dissolved gas approaches. While the above titration expression is compatible with broad trends, it is
clear that dissolved gas limiters, such as tensions, are often not the best critical flags. Indicators such as the volume
fraction of separated gas are not only more natural, but seem to correlate more strongly with experiment. Computa-
tional algorithms, coupling phase equilibration or observed numbers of bubbles to critical volumes, offer more rational
physical alternatives to the matrix of critical tensions. The critical volume hypothesis is an important development in
decompression modeling, and certainly extends to breathing mixtures other than air.

Critical Phase Volumes
The rate at which gas inflates in tissue depends upon both the excess bubble number, Λ, and the supersaturation

gradient, G. The critical volume hypothesis requires that the integral of the product of the two must always remain less
than some limit point, α V , with α a proportionality constant. Accordingly this requires,

� ∞

0
ΛGdt� αV � (58)

for bubble number excess, Λ, an approximately linear function of excitation seed radius (difference) on compression-
decompression, ∆P,

Λ � N�ri � r� (59)

with N, β seed constants, r i , r seed sizes, and V the limiting gas volume. Assuming that tissue gas gradients are constant
during decompression, td, while decaying exponentially to zero afterwards, and taking limiting condition of the equal
sign, yields for a bounce dive,

ΛG�td �λ�1� � αV � (60)

With compression-decompression, ∆P, the excitation radius, r , follows from micronuclei growth experiments in gels
and tissue,

1
r
�

1
ri
�

∆P
ζ

(61)

where the ri are excitation radii at initial pressure, Pi , for final pressure, Pf , so that, ∆P�Pf �Pi , and with, 130 µm f sw�
ζ � 180 µm f sw. At sea level, consistent fits to exposure data suggest that, r i � �80 microns. From the above, r � r i , as,
Pf �Pi , that is, smaller seeds grow on decompression. With all exposures, the integral must be evaluated iteratively over
component decompression stages, maximizing each G while satisfing the constraint equation. In the latter case, t d is the
sum of individual stage times plus interstage ascent times, assuming the same interstage ascent speed, v. Employing the
above iteratively, and one more constant, δ, defined by,

δ�
γcαV
γβriN

� 7500 f sw min � (62)

we have, �
1�

r
ri

�
G�td �λ�1� � δ

γ
γc

� 522�3 f sw min � (63)

from the Spencer bounce and Tektite saturation data. A set of critical phase volume gradients, G, appears in Table 2
below, and the gradient representation, G, is of the usual form,

G� G0 �∆Gd (64)

at depth, d.

Table 2. Critical Phase Volume Gradients.

9



halftime threshold depth surface gradient gradient change
τ �min� δ � f sw� G0 � f sw� ∆G

2 190 151.0 .518
5 135 95.0 .515

10 95 67.0 .511
20 65 49.0 .506
40 40 36.0 .468
80 30 27.0 .417

120 28 24.0 .379
240 16 23.0 .329
480 12 22.0 .312

For repetitive diving, the gradients, G, above are replaced with a reduced set, Ḡ, with the property,

Ḡ�G � (65)

tending to reduce bottom time for repetitve activities and exposures. Because of this constraint, the approach is termed
a reduced gradient bubble model. The terms, Λ G and Λ Ḡ, differ by effective bubble elimination during the previous
surface interval. To maintain the phase volume constraint during multidiving, the elimination rate must be downscaled
by a set of bubble growth, regeneration, and excitation factors, cumulatively designated, ξ, such that,

Ḡ� ξG � (66)

A conservative set of bounce gradients, G, can be employed for multiday and repetitive diving, provided they are
reduced by ξ. Three bubble factors, η, reduce the driving gradients to maintain the the phase constraint. In trying to
retrofit the reduction parameters, η, to Haldane critical tensions and nonstop time limits, it is advantageous to use a
slightly different picture for the multidiving fraction, ξ,

ξ � γrgηrg �γrpηrp �γrdηrd (67)

for γ a set of weighting factors normalized,
γrg �γrp �γrd � 1 (68)

and specific reduction factors, η j , of a general Gaussian form � j � rg� rp� ex�,

η j � 1�α j exp

�
�
�tsur�β j�

2

4β2
j

�

with α j and β j weighting fractions and Doppler relaxation halftimes following repetitive, reverse profile, and multiday
diving, and α j functions of depth differences on reverse dives and depth in general. Likelihood regression analysis is
used to fit parameters to data, with typical ranges,

0�15� αrp � �65

0�25� αrd � �85

0�10� αrg � 0�40

15 min� βrp � 130 min

25 min� βrd � 190 min

2 days� βrg � 24 days

Ascent Staging
Clearly, from all of the foregoing, the dominant modes for staging diver ascents depend upon the preponderance

of separated or dissolved phases in the tissues and blood, their coupling, and their relative time scales for elimination.
This is (and will always be) the central consideration in staging hyperbaric or hypobaric excursions to lower ambient
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pressure environments. The dynamics of elimination are directly opposite. To eliminate dissolved gases (the central
tenet of Haldane decompression theory), the diver is brought as close as possible to the surface. To eliminate free phases
(the coupled tenet of bubble decompression theory), the diver is maintained at depth to both crush bubbles and squeeze
gas out by diffusion across the bubble film surface. Since both phases must be eliminated, the problem is a playoff
in staging. In mathematical terms, staging is a minimax problem, and one that requires full blown dual phase models,
exposure data, and some concensus of what is an acceptable level of DCI incidence.

Many competing transfer pathways exist between tissues and blood (dissolved and free gas phases in both). The
central problem of the table and meter designer is to stage ascents so that both free and dissolved phases are removed
from tissues by the capillary system in optimal fashion. This is equally as difficult since we know little about the
composition and susceptibility of tissue sites, blood perfusion rates, and geometries for modeling gas transfer. And
even if we did, the complexity of the model and the computing power of our largest and fastest supercomputers would
mitigate solutions. For instance, the complexity of assent rates, tissue tensions, and ambient pressure on bubble growth,
with pressures and tensions varying widely on ascent, is not a simply tracked quantity in diving exposures even when
we know all the variables.

Attempts to track free phases within patently dissolved phase models may not optimize, but still can be mocked up
for consistency with phase dynamics. One approach is to slow ascent rates and/or introduce safety stops strategically.
As far as net gas exchange is concerned, most combinations of stops and rates can be equivalenced to almost any other
set at given pressure, so there is always some leeway. Growth minimization and free phase elimination favor slow
ascents.

Based on suggestions at an American Academy Of Underwater Sciences ascent workshop, recorded by Lang and
Egstrom, discretionary safety stops for 2-4 min in the 10-20 f sw zone are recommended. Calculations reported by
Wienke and Lewis, and summarized in Tables 3 and 4, underscore the bases of the suggestions for a number of reasons.
Relative changes in three computed trigger points, tissue tension, separated phase volume, and bubble radius, are listed
for six compartments following a nominal bounce dive to 120 f swfor 12 min, with and without a safety stop at 15 f sw
for 3 min. Stop procedures markedly restrict bubble and phase volume growth, while permitting insignificant levels of
dissolved gas buildup in the slow tissues. The reduction in growth parameters far outstrips any dissolved gas buildup in
slow compartments, and faster compartments naturally eliminate dissolved gases during the stop, important for deeper
diving. Staging diver ascents is a minimax problem. To eliminate dissolved gas, the diver is brought as close to the
surface as possible. To eliminate free phases, the diver is kept at depth. Obviously, staging diver ascents with dual phase
(free and dissolved gases) treatments is a playoff. Both must be eliminated, but timescales and pressures for both are
different.

Table 3. Relative Changes In Critical Parameters After Safety Stop

τ �min� tissue tension critical volume bubble radius
halftimes relative change relative change relative change

5 -21% -34% -68%
10 -11% -24% -39%
20 -6% -11% -24%
40 -2% -8% -18%
80 1% 3% -2%

120 2% 4% 1%

Safety stop time can be added to bottom time for additional conservatism, but the effect of neglecting stop time is
also small, as seen in Table 4. A stop at 15 f swfor 2 min is roughly equivalent to more than halving the standard ascent
rate at depths in excess of 120 f sw. Procedures such as this, as well as reduced nonstop time limits, appear beneficial in
multiday, multilevel, and repetitive diving. A safety stop near 15 f sw is easier than 10 f sw in adverse water conditions,
such as surge and surface disturbances. Slower ascent rates afford additional advantages, but safety stops in the 2-4 min
range are easier and more efficient.

Table 4. Comparative Surfacing Tissue Tensions

11



τ �min� Surfacing Tension � f sw� Surfacing Tension � f sw� Surfacing Tension � f sw�
Halftimes 120 f sw/15 min 120 f sw/12 min 120 f sw/15 min

15 f sw/3 min 15 f sw/3 min

5 101.5 77.0 79.7
10 87.5 73.0 78.1
20 66.9 59.0 64.0
40 49.9 45.7 49.2
80 39.0 36.9 38.9

120 34.9 33.5 34.8

At altitude the same procedures can be employed, with depths, ascent rates, and stops conservatively scaled by the
altitude correction factors (ratio of sea level pressure to ambient pressure at altitude) when using tables for which critical
tensions need extrapolation at reduced ambient pressure. Tables with critical tensions fitted to altitude data have their
own rules, as do meters.

Generally, bubble growth and excitation are compounded at altitude because of reduced pressure. The modeling
work of Wienke, Gernhardt and Lambertsen underscores this fact, indicating why critical tension models often fall
short in hypobaric applications. Bubbles grow faster as they get bigger, and as pressure drops. With decreased pressure,
bubbles will also expand by Boyle’s law. Bigger bubbles are not as constricted by Laplacian film tension, while reduced
pressure supports a faster rate of tissue gas diffusion into the bubble itself. Lanphier and Lehner performed extensive
aerial decompression studies with goats, concluding that aerial decompression sickness strongly resembles underwater
decompression sickness following saturation exposure. For ranging profiles followed by decompression to reduced
ambient pressure, a high incidence of chokes was noted. Chokes is thought to result from microemboli interfering with
pulmonary function. It is easy to speculate that rapid decompression to reduced pressure contributes to the buildup and
growth of pulmonary emboli for the same reasons. Lanphier also concluded that slow tissue (τ� 80 min) compartments
do not correlate with chokes, suggesting that pulmonary microemboli are linked to fast compartments. Clearly, such
an assertion also points out differences between types of decompression sickness, inferred critical tissue half-lives, and
bubble formation time scales. Chokes and limb bends result from different critical insults, at different places, and over
possibly different time scales.

The point to be made here in all cases is simple. Increased offgassing pressures reduce bubble growth rates dra-
matically in shallow zones, while impacting dissolved gas buildup in the slowest compartments minimally. Fast com-
partments also offload gas during safety stops, important for repetitive diving. Stops and slow ascent rates are always
advisable, but particularly in multiexposures.

ALTITUDE SIMILARITY AND EXPOSURE ASYMPTOTICS

Critical Extrapolations
Lower ambient pressures at elevation, and the lesser density of fresh water in smaller degree, affect gas uptake

and elimination rates in tissues and blood. If critical critical tensions are employed to limit exposures, an immediate
question centers upon from their extrapolation and testing at altitude. Certainly, from their form a linear extrapolation
of the critical tensions seems obvious, indeed just such an extrapolation of the US Navy critical tensions was proposed
and tested by Bell and Borgwardt. Buhlmann, employing a different set of halftimes and critical tensions, also extended
the Haldane algorithm to altitudes near 10,000 f t. Along with reduced critical tensions at altitude, reduced nonstop
time limits, compared to sea level, are a natural consequence.

Another approach reduces critical tensions exponentially with decreasing ambient pressure. Such an extrapolation
turns the curves down through the origin at zero ambient pressure. Intuitively, an exponential extrapolation of critical
tensions through the origin is more conservative than the linear extrapolation, since corresponding critical tensions for
given ambient pressure are smaller, also noted by others. If the extrapolation of critical tensions is allowed to follow the
same exponential decrease of ambient pressure with altitude, then the ratio of the critical tension over ambient pressure,
R, remains constant. Nonstop time limits in the exponential scheme are also smaller than corresponding time limits
in the linear scheme. As seen in Table 5, atmospheric pressure falls off approximately 1 f sw for every 1,000 f t of
elevation. Exponential extrapolations of critical tensions have been tested, and serve as the operational basis of altitude
procedures suggested by many others. Correlations of altitude chokes data for goats with constant ratio, R, trigger points
have also been established, along with similar suggestions for the nitrogen washout data in aviators.
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Altitude Procedures And Equivalent Sea Level Depth (ESLD)
Tables and meters designed for sea level need be conservatively modified at altitude if possible, otherwise, not

employed. Decomputer and table use are best left to manufacturer and designer discretions, but in any case, modification
of critical tensions is central to any Haldane altitude algorithm. We will describe a general technique and, for discussion
purposes, the US Navy dive tables (or derivative) will suffice.

Present diving schedules are based to large extent on the model discussed in the previous section, constraining
activities so that M or R are never compromised. An approach to altitude diving that is roughly as conservative as the
tested schemes of original researchers, holds the ratios, R, constant at altitude, forcing altitude exposures to be similar to
sea level exposures. Such similarity will force M to decrease exponentially with increasing altitude, keeping Rconstant
with commensurate exponential reduction in the ambient pressure, P. Constant R extrapolations of this sort should be
confined to nominal diving activities, certainly not heavy repetitive, decompression, nor saturation exposures.

The sought ratio constancy, R, at altitude induces a necessary scaling of actual depth to equivalent sea level depth
(ESLD) for table entry, while all times remain unchanged. Actual depths at altitude are multiplied by factors, α, called
altitude correction factors, which are just the ratios of sea level atmospheric pressure to altitude atmospheric pressure,
multiplied by the specific density of fresh water (0.975). Neglect of the specific density scaling is a conservative
convenience, and one of minimal impact on these factors. Today, wrist altimeters facilitate rapid, precise estimation of
α on site. They can be estimated from the barometerequation (shortly discussed) and are always greater than one. Table
5 lists correction factors at various altitudes, z, ranging to 10,000 f t. Up to about 7,000 f t elevation, α � 1�0�038 h,
with h measured in multiples of 1,000 f t, that is, z� 1000 h. The higher one ascends to dive, the deeper is his relative
exposure in terms of sea level equivalent depth. Correction factors increase rapidly above 10,000 f t. As seen in Table
5, P and α are reciprocally related, inverses actually. Again, time is measured directly, that is, correction factors are
only applied to underwater depths, ascent rates, and stops.

Table 5. Altitude Correction Factors And US Navy Altitude Groups.

altitude, atmospheric correction penalty group permissible group
or change pressure factor on arrival for ascension

z � f t� Ph � f sw� α at altitude to altitude
0 33.00 1.00

1,000 31.9 1.04 A L
2,000 30.8 1.07 B K
3,000 29.7 1.11 B J
4,000 28.5 1.16 C I
5,000 27.5 1.20 D H
6,000 26.5 1.24 E G
7,000 25.4 1.29 E F
8,000 24.5 1.34 F E
9,000 23.6 1.39 G D

10,000 22.7 1.45 H C

The similarity rule for altitude table modification and applying correction factors to calculations is straightforward.
Convert depths at altitude to sea level equivalent depths through multiplication by α. Convert all table sea level stops
and ascent rates back to actual altitude through division by α. Ascent rates are always less than 60 f sw�min, while
stops are always less than at sea level. Thus, a diver at 60 f sw at an elevation of 5,000 f t uses a depth correction of
72 f sw, taking α � 1�2. Corresponding ascent rate is 50 f sw�min, and a stop at 10 f sw at sea level translates to 8
f sw. A capillary gauge at altitude performs these depth calculations automatically, and on the fly, as described below.
Here the 3% density difference between salt and fresh water is neglected. Neglecting the 3% density correction is
conservative, because the correction decreases equivalent depth by 3%. The effect on ascent rate or stop level is not on
the conservative side, but is so small that it can be neglected in calculations anyway. Correction factors, β, are used to
scale depths at altitude to sea level equivalence for use in standard tables. The factors are always greater than one, and
are simply the ratios of sea level atmospheric pressures to atmospheric pressures at elevation, multiplied by the specfic
density, η, of fresh water,

β � η
�

33
Ph

�
� �975 exp�0�0381h� � �975α (69)
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with h measured in multiples of 1,000 f t elevation.
If a diver has equilibrated with ambient pressure at any elevation, than any reduction in ambient pressure will

put the diver in a repetitive group, merely because tissue tensions exceed ambient pressure. If the original and new
pressures are specified, it is possible to estimate tissue saturation and, hence, repetitive group for the excursion. Similar
comments apply to to pressure reductions following any diving activity, with sea level diving the usual bill of fare.
These considerations are treated as follows.

At sea level, each repetitive group represents an increment of tissue pressure over ambient (P0 � 33 f sw). For the US
Navy tables, this increment is 2 f sw (absolute). If we compute the difference between sea level pressure pressure and
altitude pressure, and then scale the difference by the ratio of sea level atmospheric pressure to that altitude atmospheric
pressure (correction factor α), we can estimate the repetitive group in which a sea level diver finds himself following
immediate ascent to altitude. These group specifications are listed in column 4 of Table 5, and represent penalty time for
the excursion to altitude, Entries were computed using sea level as the baseline, but are also approriate (conservative)
for any excursion between differing elevations.

In similar fashion, excursions to higher altitude following diving are limited by tissue critical tensions, and minimal
repetitive group designators can be attached to any planned excursion. For the 120 minute compartment, the surfacing
critical tension (sea level) is 51 f sw. On the safer side, we take 44 f swas the limiting tension, convert it to an absolute
tension of 60 f sw (44/.79), and then inversely scale it to altitude by the ratio of sea level pressure to altitude pressure,
that is, α. The resulting limiting tensions at altitude can then be converted to standard US Navy groups which are
tabulated in column 5 of Table 5. Entries represent maximum permissible groups for immediate altitude excursions,
and do not account for any travel time. Thus a diver would have to wait some length of time after a dive, until he
dropped into the permissible group category, before ascending. The D�Grouprule for flying after diving is seen as a
subcase for an altitude excursion to 9,000 f t (maximum cabin pressure). The question of altitude delay is an interesting
one, a subject of recent discussions.

Extended Haldane Staging
Operational consistency of Haldane table and meter algorithms is also of interest here, and part of the reason is

reflected in Table 6, which contrasts surfacing critical tensions, M0, for a number of meter algorithms. Entries were
estimated (computed) from quoted meter nonstop time limits, t n, using the 5, 10, 20, 40, 80, and 120 mincompartments
for convenience of illustration, that is to say that arbitrary τ and M 0 can be fitted to any set of nonstop time limits.
Ascent and descent rates of 60 f sw�min were also employed in calculations. The Workman, Buhlmann, and Spencer
critical surfacing tensions are fixed, while the equivalent Wienke-Yount surfacing critical tensions vary, depending on
repetitive exposure. Entries are also representative of critical tensions employed in related tables.

Table 6. Table And Meter Surfacing Critical Tensions (M0).

halftime Workman Spencer Buhlmann Wienke-Yount
τ �min� M0 � f sw� M0 � f sw� M0 � f sw� M0 � f sw�

5 104 100 102 100-70
10 88 84 82 81-60
20 72 68 65 67-57
40 58 53 56 57-49
80 52 51 50 51-46

120 51 49 48 48-45

A glance at Table 6 underscores the operational consistency of classes of Haldane meter algorithms, with the
Wienke-Yount approach effectively reducing critical tensions in multidiving applications as the simplest meter im-
plementation of a dual phase model. The variation in M 0 within the same compartments is relatively small. Table 7
collates the corresponding nonstop time limits, tn, for completeness.

Table 7. Table And Meter Nonstop Time Limits (tn).
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depth Workman Spencer Buhlmann Wienke-Yount
d � f sw) tn �min� tn �min� tn �min� tn �min�

30 225 290 250
40 200 135 125 130
50 100 75 75 73
60 60 50 54 52
70 50 40 38 39
80 40 30 26 27
90 30 25 22 22

100 25 20 20 18
110 20 15 17 15
120 15 10 15 12
130 10 5 11 9

Variation in the nonstop limits is greater than in the critical tensions, with the US Navy set the most liberal. Using
the equivalent depth approach within the similarity method, the nonstop limits in Table 7 can be extrapolated to altitude
with correction factors. Correction factors are routinely employed to scale (multiply) actual depths for direct table entry
(ESLD). Scaled depths at altitude are always greater than actual depths, as discussed in altitude procedures, so time
limts are less. If correction factors are applied to the Wienke-Yount critical tensions in Table 6, virtually the same set
of nonstop limits at altitude result. Reduction in nonstop time limits is some 2%� 3% for each 1,000 f t of elevation.
This is no real surprise, since phase volume models recover Haldane predictions for short (nonstop) exposures.

Hypobaric And Hyperbaric Asymptotics
From discussions of the saturation curve, there are clearly differences in data fits across the full range of ambient

pressures, 0 � P� ∞, and more particulary, across the hypobaric, P� 33 f sw, and hyperbaric, P� 33 f sw, regimes.
A physically consistent way to join the two regions can be effected within a dual phase model for gas transfer, as
will be sketched shortly. Generally though, models for controlling and limiting hypobaric and hyperbaric exposures
have long differed over ranges of applicability. Recent testing and comparison of altitude washout data question the
hypobaric extension of the linear (hyperbaric) saturation curve, pointing instead to the correlation of altitude data
(Conkin) with constant decompression ratios, R, in humans. Similar altitude correlations in sheep were noted by
Lanphier and Lehner. Extensions of the saturation curve to altitude have been discussed by many, including Ingle,
Bell and Borgwardt, Wienke, Cross, Smith, and Bassett in the not too distant past, with correlations and fits over small
altitude excursions nicely established. However, in the limit of zero ambient pressure, P, these linear extrapolations are
neither consistent with data nor with simple underlying physics (absolute law of entropy). Closure, then, of hypobaric
and hyperbaric diving data is necessary, and must be effected with a more inclusive form of the saturation curve, one
exhibiting proper behavior in both limits (pressure asymptotes).

Using the RGBM (or VPM) just such a saturation curve was obtained by Wienke in a coupled framework treating
both free and dissolved gas buildup and elimination in tissues. Within the phase volume constraint in correlated bubble
dynamics, a general saturation curve of the form,

M � �ζ �1�exp��ξ�P��P (70)

ensues for critical tensions, M, at ambient pressure, P, for ζ, ξ bubble number constants, and has the proper (zero
entropy) limiting form. Obviously, in the hypobaric limit, as P� 0, then M � 0, while in the hyperbaric limit, as
P�∞, then M� ζP�ξ. Corresponding tissue ratios, R�M�P, are bounded for all pressures. In the hypobaric regime,
as P� 0, then R� ζ�1, while in the hyperbaric limit, P� ∞, then R� ζ. Thus a linear form of the saturation curve
is recovered for hyperbaric exposures, while a nearly constant decompression ratio maintains for hypobaric exposures.
Typical ranges for the bubble constants, ζ and ξ, when nested within other model requirements for extrapolations, are,

6�5 f sw� ξ � 14�4 f sw (71)

1�25� ζ � 1�48 (72)
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Just how the general form of the saturation curve listed above results can be seen in the following way. The integral
form of the phase constraint couples permissible bubble excess, Λ, and gradient, G, in time,

� ∞

0
ΛGdt� αV (73)

as described previously, with V phase volume, and α a constant in time, t. The bubble excess, Λ, takes general form,

Λ � Nβ
� r

0
exp��βr�dr ∝ 1�exp��βr� (74)

assuming all nuclei up to r are excited by the saturation exposure. with N the total number of bubbles, and β a scale
length. For initial excitation radius, r i , at pressure, Pi , the excitation radius, r , for compression to higher pressure, P, is
given generally by,

1
r
�

1
ri

� κ�P�Pi� (75)

with,

130 µm f sw�
1
κ
� 190µm f sw (76)

as a typical range in bubble excitation experiments in gels.
Clearly, from the above definitions, we see that,

1
r

∝ P (77)

On the dissolved gas side, we know that critical tensions scale with absolute pressure, P,

M ∝ P (78)

and on the free side, critical tensions depend upon the bubble excess,

M ∝ Λ (79)

Putting these qualitative expressions in mathematical terms, we can equate directly, for ζ and ξ proportionality constants,
to the bilinear form,

M � ζP�ΛP� �ζ �1�exp��ξ�P��P (80)

and ζ and ξ subsuming all other previously defined parameters. The limiting forms drop from the following identities,

lim
P�∞

exp��ξ�P�� 1� ξ�P (81)

lim
P�0

exp��ξ�P�� 0 (82)

Accordingly, using the above in the hypobaric regime,

lim
P�0

M� lim
P�0

�ζ �1�P� 0 (83)

lim
P�0

G� lim
P�0

ζP� 0 (84)

lim
P�0

R� lim
P�0

�ζ �1�� �ζ �1� (85)

while, using the same in the hyperbaric regime,

lim
P�∞

M� ξ � ζP (86)

lim
P�∞

G� ξ ��ζ�1�P (87)

lim
P�∞

R� ζ (88)

The classical hyperbaric straightlinetension and hypobaric constantratio are thus recovered in a generalized phase
representation.
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Barometer Equation
The atmosphere of the Earth is mostly nitrogen, and oxygen, in roughly 79/21 proportions. Neglecting the small

variation in gravity, g, over elevations up to 15,000 f t, the total atmospheric pressure can be approximated,

P� 26�07 exp��mN2g0h�kT��6�93 exp��mO2g0h�kT� (89)

for surface gravity, g0 � 9�8 m�sec2. Furthermore, the molecular masses of nitrogen and oxygen (diatomic) differ only
by 4 amu, so that reasonably,

mO2 �mN2 � 28�16 amu� 4�708�10�26 kg (90)

yielding,
P� 33 exp���0033h�T� (91)

For a moderate isothermal atmosphere, T � 300 K o,

P� 33 exp��0�038h� (92)

with h specifically in multiples of 1,000 f t elevation. For small values of h,

P� 33�1� �038h� (93)

or put another way, atmospheric pressure drops roughly 3% for each 1,000 f t of elevation, In diving parlance, this is
the Cross correction, the factor yielding equivalent sea level depths for table entry at altitude.

MIXED GASES AND DECOMPRESSION

Mixtures
Mixed breathing gases, across a spectrum of underwater activities, have been utilized successfully, mostly mixtures

of nitrogen, helium, and oxygen, differing from pure air, and lately those with higher oxygen content than air �enriched�,
which can be used in shallow diving. Non-enriched mixtures of nitrogen/oxygen (nitrox), helium/oxygen (heliox), and
helium/nitrogen/oxygen (trimix), of course, are employed commercially in deep and saturation diving. Recently, mix-
tures of hydrogen/oxygen (hydrox) have been tested. A closer look at these inert gases in a range of diving applications
is illuminating, particularly gas properties, advantages and disadvantages, and interplay.

Biological Reactivities
Low pressure oxygen toxicity can occur if a gas mixture with 60% oxygen is breathed at 1 atmfor 12 hoursor more.

Pulmonary damage, irritation, and coughing are manifestations (pulmonary toxicity). High pressure oxygen toxicity can
occur when breathing pure oxygen at pressures greater than 1 atmfor periods of minutes to hours, the lower the oxygen
pressure the longer the time for symptoms to develop, and vice versa, as seen in Table 8 below. Twitching, convulsions,
and dizziness are the symptoms (nervous system toxicity). On the other hand, if oxygen pressures fall below .16 atm,
unconsciousness may result. Low levels of oxygen inhibit tissue cell metabolic function (hypoxia). Confusion and
difficulty in maintaining coordination are milder symptoms. Severe hypoxia requires medical attention.

Table 8. Oxygen Depth-Time Limits �tx�.

oxygen depth air depth time limit
d � f sw� d � f sw� tx �min�

10 50 240
15 75 150
20 100 110
25 125 75
30 150 45
35 175 25
40 200 10
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Clearly a constraint in mixed gas diving is the oxygen partial pressure. Inspired partial pressures of oxygen must
remain below 1.6 atm (52.8 f sw) to prevent central nervous system (CNS) toxicity, and above .16 atm (5.3 f sw) to
prevent hypoxia. This window, so to speak, is confining, some 1.44 atm (47.5 f sw). Denoting the mole fraction of
oxygen, fO2 , the upper and lower limits of this window, dmax and dmin, can be written ( f sw),

ηdmax�
52�8
fO2

�Ph � (94)

ηdmin �
5�3
fO2

�Ph � (95)

ηdmax�ηdmin�
47�5
fO2

� (96)

with η the specific density (with respect to sea water) and with working depths, d, limited by dmax and dmin,

dmin� d� dmax � (97)

For fresh water, η � �975, and for sea water, η � 1�000. Certainly up to about 7,000 f t elevation, the lower limit,
dmin, is no real constraint, with the surface accessible as the limit.

Another factor inhibiting performance underwater is inert gas narcosis, particularly at increasing ambient pres-
sure. Although the common gases nitrogen and helium associated with diving are physiologically inert under normal
atmospheric conditions, they both exhibit anesthetic properties as their partial pressures increase. The mechanism is
not completely understood, but impaired carbon dioxide diffusion in the lungs, increased oxygen tension, fear, and
related chemical reactions have all been implicated in the past. With 80/20 mixtures, symptom onset for nitrogen is
near 100 f sw, and very much deeper for helium, in the 1,000 f sw range. Symptoms range from light headedness to
unconsciousness at the extreme.

Nitrogen is limited as an inert gas for diving. Increased pressures of nitrogen beyond 200 f sw lead to excessive
euphoria, and reduced mental and physical functional ability, while beyond 600 f sw loss of consciousness results.
Individual tolerances vary widely, often depending on activity. Symptoms can be marked at the beginning of a deep
dive, gradually decreasing with time. Flow resistance and the onset of turbulence in the airways of the body increase
with higher breathing gas pressure, considerably reducing ventilation with nitrogen-rich breathing mixtures during deep
diving. Oxygen is also limited at depth for the usual toxicity reasons. Dives beyond 300 f sw requiring bottom times
of hours need employ lighter, more weakly reacting, and less narcotic gases than nitrogen, and all coupled to reduced
oxygen partial pressures.

Comparative Properties
A number of inert gas replacements have been tested, such as hydrogen, neon, argon, and helium, with only he-

lium and hydrogen performing satisfactorily on all counts. Because it is the lightest, hydrogen has elimination speed
advantages over helium, but, because of the high explosive risk in mixing hydrogen, helium has emerged as the best
all-around inert gas for deep and saturation diving. Helium can be breathed for months without tissue damage. Argon
is highly soluble and heavier than nitrogen, and thus a very poor choice. Neon is not much lighter than nitrogen, but
is only slightly more soluble than helium. Of the five, helium is the least and argon the most narcotic inert gas under
pressure.

Saturation and desaturation speeds of inert gases are inversely proportional to the square root of their atomic masses.
Hydrogen will saturate and desaturate approximately 3.7 times faster than nitrogen, and helium will saturate and desat-
urate some 2.7 times faster than nitrogen. Differences between neon, argon, and nitrogen are not significant for diving.
Comparative properties for hydrogen, helium, neon, nitrogen, argon, and oxygen are listed in Table 9. Solubilities,
S, are quoted in atm�1, weights, A, in atomic mass units�amu�, and relative narcotic potencies, ν, are dimensionless
(referenced to nitrogen in observed effect). The least potent gases have the highest index, ν.

Table 9. Inert Gas And Oxygen Molecular Weights, Solubilities, and Narcotic Potency.
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H2 He Ne N2 Ar O2

A �amu� 2.02 4.00 20.18 28.02 39.44 32.00

S�atm�1�
blood .0149 .0087 .0093 .0122 .0260 .0241

oil .0502 .0150 .0199 .0670 .1480 .1220

ν 1.83 4.26 3.58 1.00 0.43

The size of bubbles formed with various inert gases depends upon the amount of gas dissolved, and hence the
solubilities. Higher gas solubilities promote bigger bubbles. Thus, helium is preferable to hydrogen as a light gas,
while nitrogen is perferable to argon as a heavy gas. Neon solubility roughly equals nitrogen solubility. Narcotic
potency correlates with lipid (fatty tissue) solubility, with the least narcotic gases the least soluble. Different uptake
and elimination speeds suggest optimal means for reducing decompression time using helium and nitrogen mixtures.
Following deep dives beyond 300 f swbreathing helium, switching to nitrogen is without risk, while helium elimination
is accelerated because the helium tissue-blood gradient is increased when breathing an air mixture. By gradually
increasing the oxygen content after substituting nitrogen for helium, the nitrogen uptake can also be kept low. Workable
combinations of gas switching depend upon the exposure and the tissue compartment controlling the ascent.

Mixed gas diving dates back to the mid 1940s, but proof of principle diving experiments were carried out in the
late 50s. In 1945, Zetterstrom dove to 500 f sw using hydrox and nitrox as a travel mix, but died of hypoxia and
DCI when a tender hoisted him to the surface too soon. In 1959, Keller and Buhlmann devised a heliox schedule
to 730 f sw with only 45 min of decompression. Then, in 1962, Keller and Small bounced to 1,000 f sw, but lost
consciousness on the way up due to platform support errors. Small and another support diver, Whittaker, died as a
result. In 1965, Workman published decompression tables for nitrox and heliox, with the nitrox version evolving into
USN Tables. At Duke University Medical Center, the 3 man team of Atlantis III made a record chamber dive to 2250
f sw on heliox, and Bennett found that 10% nitrogen added to the heliox eliminated high pressure nervous syndrome
(HPNS). In deep saturation diving, normoxicbreathing mixtures of gases are often advantageously employed to address
oxygen concerns. A normoxic breathing mixture, helium or nitrogen, reduces the oxygen percentage so that the partial
pressure of oxygen at the working depth is the same as at sea level, the obvious concerns, again, hypoxia and toxicity.
Critical tensions can be employed in helium saturation diving in much the same fashion as nitrogen diving. A critical
tension, recall, is the maximum permissible value of inert gas tension (M-value) for a hypothetical tissue compartment
with specified halftime. An approach to helium exchange in tissue compartments employs the usual nitrogen set with
halftimes reduced by 2.7, that is, the helium halftimes are extracted from the nitrogen halftimes following division by
2.7, and the same critical tension is assumed for both gas compartments. Researchers have tested schedules based on
just such an approach. Tissue tensions scale as the relative proportion of inert gas in any mixture. More so than in
air diving, computational methods for mixed gas diving and decompression are often proprietary information in the
commercial sector.

Helium (normal 80/20 mixture) nonstop time limits are shorter than nitrogen, but follow a t 1�2 law similar to
nitrogen, that is, depth times the square root of the nonstop time limit is approximately constant. Using standard
techniques of extracting critical tensions from the nonstop time limits, fast compartment critical tensions can be assigned
for applications. Modern bubble models, such as the varying permeability model, have also been used strategically in
helium diving.

Today, the three helium and nitrogen mixtures (nitrox, heliox, trimix) are employed for deep and saturation diving,
with a tendency towards usage of enriched oxygen mixtures in shallow (recreational) diving. The use of enriched oxygen
mixtures by recreational divers is the subject of controversy, aptly a concern over diver safety. Breathing mixture purity,
accurate assessment of component gas ratios, oxygen toxicity, and appropriate decompression procedures are valid
concerns for the mixed gas diver. Care, in the use of breathing mixtures, is to be underscored. Too little, or too much,
oxygen can be disastrous. The fourth hydrogen mixture (hydrox) is much less commonplace.

Nitrox
Mixtures of oxygen and nitrogen with less oxygen than 21% (pure air) offer protection from oxygen toxicity in

moderately deep and saturation diving. Moderately deep here means no more than a few hundred feet. Hypoxia is a
concern with mixtures containing as much as 15% oxygen in this range. Saturation diving on oxygen-scarce nitrox
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mixtures is a carefully planned exposure. The narcotic effects of nitrogen in the 100 f sw to 200 f sw depth range
mitigate against nitrox for deep diving.

Diving on enriched nitrox mixtures need be carefully planned exposures, but for opposite reason, that is, oxygen
toxicity. Mixtures of 30% more of oxygen significantly reduce partial pressures of nitrogen to the point of down loading
tissue tensions compared to air diving. If standard air decompression procedures are employed, enriched nitrox affords
a diving safety margin. However, because of elevated oxygen partial pressures, a maximum permissible depth (floor)
needs be assigned to any enriched oxygen mixture. Taking 1.6 atm(52.8 f sw) as the oxygen partial pressure limit, the
floor for any mixture is easily computed. Enriched nitrox with 32% oxygen is floored at a depth of 130 f swfor diving,
also called the oxygen limit point. Higher enrichments raise that floor proportionately.

Decompression requirements on enriched nitrox are less stringent than air, simply because the nitrogen content is
reduced below 79%. Many equivalent means to schedule enriched nitrox diving exist, based on the standard Haldane
critical tension approach. Air critical tensions can be employed with exponential buildup and elimination equations
tracking the (reduced) nitrogen tissue gas exchange, or equivalent air depths (always less than the actual depths on
enriched nitrox) can be used with air tables. The latter procedure ultimately relates inspired nitrogen pressure on a
nitrox mixture to that of air at shallower depth (equivalent air depth). For instance, a 74/26 nitrox mixture at a depth
of 140 f sw has an equivalent air depth of 130 f sw for table entry. Closed breathing circuit divers have employed the
equivalent air depth approach for many years.

Heliox
The narcotic effects of nitrogen in the several hundred feet range prompted researchers to find a less reactive breath-

ing gas for deeper diving. Tests, correlating narcotic effects and lipid solubility, affirm helium as the least narcotic of
breathing gases, some 4 times less narcotic than nitrogen according to Bennett, and as summarized in Table 9. Deep
saturation and extended habitat diving, conducted at depths of 1,000 f t or more on helium/oxygen mixtures by the US
Navy, ultimately ushered in the era of heliox diving. For very deep and saturation diving above 700 f swor so, heliox
remains a popular, though expensive, breathing mixture.

Helium uptake and elimination can also be tracked with the standard Haldane exponential expressions employed
for nitrogen, but with a notable exception. Corresponding helium halftimes are some 2.7 times faster than nitrogen
for the same hypothetical tissue compartment. Thus, at saturation, a 180 minutehelium compartment behaves like a
480 minutenitrogen compartment. All the computational machinery in place for nitrogen diving can be ported over to
helium nicely, with the 2.7 scaling of halftimes expedient in fitting most helium data.

When diving on heliox, particularly for deep and long exposures, it is advantageous to switch to nitrox on ascent to
optimize decompression time, as discussed earlier. The higher the helium saturation in the slow tissue compartments,
the later the change to a nitrogen breathing environment. Progressive increases of nitrogen partial pressure enhance
helium washout, but also minimize nitrogen absorption in those same compartments. Similarly, progressive increases
in oxygen partial pressures aid washout of all inert gases, while also addressing concerns of hypoxia.

An amusing problem in helium breathing environments is the high-pitched voice change, often requiring electronic
voice encoding to facilitate diver communication. Helium is also very penetrating, often damaging vacuum tubes,
gauges, and electronic components not usually affected by nitrogen. Though helium remains a choice for deep diving,
some nitrogen facilitates decompression, ameliorates the voice problem, and helps to keep the diver warm. Pure helium,
however, can be an asphyxiant.

Trimix
Diving much below 1400 f sw on heliox is not only impractical, but also marginally hazardous. High pressure

nervous syndrome (HPNS) is a major problem on descent in very deep diving, and is quite complex. The addition of
nitrogen to helium breathing mixtures (trimix), is beneficial in ameliorating HPNS. Trimix is a useful breathing mixture
at depths ranging from 500 f sw to 2,000 f sw, with nitrogen percentages usually below 10% in operational diving,
because of narcotic effect.

Decompression concerns on trimix can be addressed with traditional techniques. Uptake and elimination of both
helium and nitrogen can be limited by critical tensions. Using a basic set of nitrogen halftimes and critical tensions, and
a corresponding set of helium halftimes approximately 3 times faster for the same nitrogen compartment, total inert gas
uptake and elimination can be assumed to be the sum of fractional nitrogen and helium in the trimix breathing medium,
using the usual exponential expressions for each inert gas component. Such approaches to trimix decompression were
tested by researchers years ago, and many others after them.

Hydrox
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Since hydrogen is the lightest of gases, it is reasonably expected to offer the lowest breathing resistance in a smooth
flow system, promoting rapid transfer of oxygen and carbon dioxide within the lungs at depth. Considering solubility
and diffusivity, nitrogen uptake and elimination rates in blood and tissue should be more rapid than nitrogen, and even
helium. In actuality, the performance of hydrogen falls between nitrogen and helium as an inert breathing gas for diving.

Despite any potential advantages of hydrogen/oxygen breathing mixtures, users have been discouraged from exper-
imenting with hydrox because of the explosive and flammable nature of most mixtures. Work in the early 1950s by the
Bureau of Mines, however, established that oxygen percentages below the 3%-4% level provide a safety margin against
explosive and flammability risks. A 97/3 mixture of hydrogen and oxygen could be utilized at depths as shallow as
200 f sw, where oxygen partial pressure equals sea level partial pressure. Experiments with mice also indicate that the
narcotic potency of hydrogen is less than nitrogen, but greater than helium. Unlike helium, hydrogen is also relatively
plentiful, and inexpensive.

Haldane Decompression Procedures
In the case of mixtures of gases (nitrogen, helium, hydrogen), the Haldane decompression procedures can be gener-

alized in a straightforward manner, using a set of nitrogen critical tensions, M, and halftimes, τ, as the bases. Denoting
gas species, j � N2� He� H2, atomic masses, Aj , and partial pressures, pj , each component satisfies a Haldane tissue
equation, with rate modified coefficient, λ j , given by,

pj � pa j � �pi j � pa j� exp��λ j t� � (98)

for pa j and pi j ambient and initial partial pressures of the j th species, and with decay constant, λ j , related by Graham’s
law to the nitrogen coefficient, λN2 � λ, by,

λ j �

�
AN2

Aj

�1�2

λ � (99)

Thus, for instance, one has,
λHe � 2�7 λ � (100)

λH2 � 3�7 λ � (101)

In a mixture, the total tension, Π, is the sum of all J partial tensions, p j ,

Π �
J

∑
j�1

� pa j ��pi j � pa j� exp��λ j t� � (102)

and the decompression requirement is simply,

Π �
J

∑
j�1

pj �M � (103)

for all exposures. Denoting ambient partial pressures, pa j, as a fraction, f j , of total pressure, P, that is,

pa j � f j P � (104)

it follows that,

fO2 �
J

∑
j�1

f j � 1 (105)

neglecting any carbon dioxide or water vapor in the mixture, of course. For 75/25 (enriched) nitrox, f N2 � �75, for 90/10
heliox, fHe � �90, for 75/10/15 trimix, fHe � �75, fN2 � �10, while for 95/5 hydrox, fH2 � �95. For pure air obviously
fN2 � 0�79, as the common case. Clearly the treatment of breathing mixtures assumes a single critical tension, M, for
each compartment, τ, in this case, extracted from the nitrogen data.

With enriched nitrox ( fN2 � �79), it is clear that the nitrogen decompression requirements are reduced when using
the same set of M, that is, the air set of M are assumed to apply equally to both air and other nitrogen mixtures. The
procedure has been applied to heliox, trimix, and hydrox mixtures in similar vein. One important constraint in any
mixture is the oxygen content. Partial pressures of oxygen must be kept below 52.8 f sw (1.6 atm) to prevent toxicity,
and above 5.3 f sw (.16 atm) to prevent hypoxia. Balancing diver mobility within this window at increasing depth is a
delicate procedure at times.
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Isobaric Countertransport
Isobaric countertransport simply denotes isobaric diffusion of two gases in opposite directions. Perhaps a better

descriptor is countercurrent diffusion. Historically, both terms have been used, with the former mostly employed in the
decompression arena. Countertransport processes are a concern in mixed gas diving, when differing gas solubilities
and diffusion coefficients provide a means for multiple inert gases to move in opposite directions under facilitating
gradients. While ambient pressure remains constant, such counterdiffusion currents can temporarily induce high tissue
gas supersaturation levels, and greater susceptibility to bubble formation and DCI. In general, problems can be avoided
when diving by employing light to heavy (breathing) gas mixture switches, and by using more slowly diffusing gases
than the breathing mixture inside enclosure suits (drysuits). Such procedure promotes isobaric desaturation� as termed
in the lore. The opposite, switching from heavy to light gas mixtures and using more rapidly diffusing gases than the
breathing mixture inside exposure suits, promotes isobaric saturationand enhanced susceptibility to bubble formation.
More simply, the former procedure reduces gas loading, while the latter increases gas loading. The effects of gas
switching can be dramatic, as is well known. For instance, a dive to 130 f sw for 120 min on 80/20 heliox with a
switch to 80/20 nitrox at 60 f ws requires 15 min of decompression time, while 210 min is required without the switch
(Keller and Buhlmann in famous mixed gas tests in 1965). Yet, skin leisions and vestibular dysfunctionality have
developed in divers breathing nitrogen while immersed in helium (test chambers and exposure suits). And nitrogen-to-
helium breathing mixture switches are seldom recommended for diving. A closer look at the isobaric countertransport
phenomenon is interesting.

In the perfusion case, for a mixture of J gases, the total tissue tension, Π, at time, t, for ambient partial pressure,
pa j, and initial partial pressure, pi j , with j denoting the gas species, can be written,

Π �
J

∑
j�1

� pa j ��pi j � pa j� exp��λ j t� � (106)

for, as usual,

λ j �
�693
τ j

(107)

and τ j the tissue halftime. In the diffusion case, we similarly find

Π �
J

∑
j�1

�
pa j ��pi j � pa j�

8
π2

∞

∑
n�1

1
�2n�1�2 exp��α2

2n�1Djt�

�
(108)

with,

α2n�1 �
�2n�1�π

l
(109)

for l a characteristic tissue scale parameter, and D j the tissue diffusivity. These two expressions accommodate a multi-
plicity of initial condtions, gas switches, and provide a platform to discuss isobaric counterprocesses.

The form of the perfusion and diffusion total tensions, Π, is very similar. In fact, if we assume that the first term in
the diffusion case dominates, we can write in general,

Π �
J

∑
j�1

�pa j ��pi j � pa j� exp��κ j t�� (110)

with, in the perfusion limit,
κ j � λ j (111)

and, in the diffusion limit, taking just the first term �n� 1�,

κ j � α2
1Dj �

π2Dj

l2 (112)

Simplifying matters by taking the case for two gases, J � 2, we have,

Π � �pa1 � pa2���pi1� pa1� exp��κ1t���pi2� pa2� exp��κ2t� (113)
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for total tension, Π, as a function of individual gas initial tensions, time, and ambient partial pressures.
A local maxima or minima occurs in the total tension, Π, whenever,

∂Π
∂t

��κ1�pi1� pa1� exp��κ1t��κ2�pi2� pa2� exp��κ2t� � 0 (114)

for constant ambient partial pressures, pa. Or, equivalently written,

�pi1� pa1�

�pa2� pi2�
�

κ2

κ1
exp��κ1�κ2�t� (115)

The equation is satisfied at a time, tm, such that,

tm �
1

�κ1�κ2�
ln

�
κ2�pi2� pa2�

κ1�pi1� pa1�

�
(116)

and represents a local maxima in total tension, Π, if (after some algebra),�
∂2Π
∂t2

�
t�tm

� 0 (117)

or, a local minima, if, �
∂2Π
∂t2

�
t�tm

� 0 (118)

Some interesting features of isobaric counterdiffusion are imbedded in the above relationships, such as flow direction-
ality, time scales, effects of switching, light versus heavy gases, and isobaric supersaturation or desaturation.

With positive time, tm � 0, only two conditions are permissible:

κ1�pi1� pa1�

κ2�pa2� pi2�
� 1 � κ1 � κ2 (119)

or,
κ1�pi1� pa1�

κ2�pa2� pi2�
� 1 � κ1 � κ2 (120)

and the argument of the log function must be greater than zero always. The above relationships are complex functions of
diffusivities, initial tensions, and ambient tensions before and after gas switching. The former case, κ 1 � κ2, represents
light-to-heavy gas switching (helium-to- nitrogen, for instance, where κ He � 2�7κN2 ), facilitating rapid desaturation of
the lighter gas before heavier gas buildup. The latter case, κ 1 � κ2, enhances supersaturation, as the lighter gas builds
up rapidly before the heavier gas is eliminated.

Equivalent Air Depth (EAD)
In extending air tables to other breathing mixtures, an extrapolation based on critical tensions is the crux of the

equivalent air depth(EAD) method. The equivalent air depth method for table use derives from the imposed equality
of mixture and inert gas partial pressures, and is very similar to the altitude equivalent depth method, but is not the
same. For instance, with nitrox mixtures, the usual case, the equivalent air depth, δ, is related to the effective depth, d,
by requiring equality of nitrogen partial pressures for air and nitrogen mixture with mole fraction f N2 ,

δ�
fN2

�79
�Ph�d��Ph� (121)

At altitude, the effective depth, d, is the equivalent sea level depth described earlier. At sea level, the actual depth and
effective depth are the same.

With enriched mixtures ( fN2 � �79), it is clear that the equivalent air depth, δ, is less than the effective depth, d, so
that nitrogen decompression requirements are reduced when using δ to enter any set of air tables. Obviously. the same
set of M are assumed to apply equally to both air and other mixture in the approach. At sea level, the above reduces,

δ�
fN2

�79
�33�d��33� (122)

with d the actual depth, and has been utlilized extensively in ocean diving.
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Equivalent Mixture Depth (EMD)
The same procedure can be applied to arbitrary heliox, trimix, and hydrox mixtures in theory, basically an extrap-

olation from a reference (standard) table with the same gas components (helium, nitrogen, or hydrogen with oxygen).
Denoting gas molar fractions in the standard (table) mixture, f sk, with k � N2, He, H2, O2, and molar fractions in the
arbitrary mixture, fk, we have for the K component mixture,

δ�
�1� fO2�

�1� fsO2�
�Ph�d��Ph� (123)

This is the equivalent mixture depth(EMD). At altitude, the ESLD is first determined, followed by conversion to an
EAD or EMD (conservative order).

Oxygen Rebreathing
As early as 1880, Fleuss developed and tested the first closed circuit, oxygen rebreathing system. At that time, of

course, oxygen toxicity was not completely understood, though the effects of breathing pure oxygen were coupled to
excitability and fever. In ensuing years, the apparatus was refined considerably, and was used by underwater combatants
in World War II. During the 1950s, recreational divers used oxygen rebreathers. However, by the late 1950s, recreational
divers switched to the popular open circuit device developed by Cousteau and Gagnan, thereby trading oxygen toxicity
and caustic carbon dioxide concerns for decompression sickness and nitrogen narcosis. Today, rebreathers are witness-
ing a rebirth among technical divers. And, US Navy Underwater Demolition (UDT) and Sea, Air, Land (SEAL) Teams
have continuously employed rebreathers for tactical operations.

In closed circuit systems, exhaled gas is kept in the apparatus, scrubbed of carbon dioxide by chemical absorbents,
and then returned to the diver. No gas is released into the water (no bubbles). Gas consumption is related only to the
physiological consumption of oxygen. Only a small amount of oxygen is required for extended exposures. Oxygen is
taken directly from a breathing bag, and exhaled gas passes separately through an alkaline, absorbent material, where it
is scrubbed of carbon dioxide. A typical reduction process involves water vapor, sodium and potassium hydroxide, and
carbon dioxide in the reaction chain,

CO2 �H2 �O� H2 �CO3� (124)

2H2 �CO3 �2NaOH�2KOH� Na2 �CO3 �K2 �CO3 �4H2 �O� (125)

Na2 �CO3 �K2 �CO3 �2Ca�OH�2� 2CaCO3 �2NaOH�2KOH� (126)

Rebreathers today last about 3 hr, using approximately 6 m3 of oxygen and 4 lbs of absorbent. Because of oxygen
toxicity, depth is a limitation for oxygen rebreathing. Depth limitation for pure oxygen rebreathing is near 20 f sw.
Today, closed circuit mixed gas rebreathers blend inert gases with oxygen (lowering oxygen partial pressure) to extend
depth limitations. Two cylinders, one oxygen and the other inert gas (or a premixed cylinder), are employed, and the
mixture is scrubbed of carbon dioxide before return to the breathing bag.

Closed circuit oxygen scuba takes advantage of gas conservation, but is limited in dive depth and duration by oxygen
toxicity effects. Open circuit scuba offers greater depth flexibility, but is limited in depth and duration by the inefficiency
of gas utilization. To bridge this gap, semi-closed circuit mixed gas rebreathers were developed. The semi-closed circuit
rebreather operates much like the closed circuit rebreather, but requires a continuous, or frequent, purge to prevent toxic
inert gas buildup. Two cylinders of oxygen and inert gas (or one premixed), are charged with safe levels of both,
usually corresponding to safe oxygen partial pressure at the maximum operating depth. Gas flow from the high pressure
cylinders the breathing circuit is controlled by a regulator and nozzle, admitting a continuous and constant mass flow of
gas determined by oxygen consumption requirements. The diver inhales the mixture from the breathing bag and exhales
it into the exhalation bag. Pressure in the exhalation bag forces the gas mixture through the carbon dioxide scrubber,
and from the scrubber back into the breathing bag for diver consumption. When gas pressure in the breathing circuit
reaches a preset limit, a relief valve opens in the exhalation bag, purging excess gas into the water.

Oxygen rebreathing at high partial pressures can lead to central nervous system (or pulmonary) oxygen poisoning.
It is thought that high pressure oxygen increases the production of oxygen free radicals disrupting cell function. The US
Navy conducted research into safe depths and durations for oxygen diving, and concluded that there is very little risk of
central nervous system oxygen toxicity when partial pressures of oxygen are maintained below 1.6 atm. Additionally,
risk only increases slightly when oxygen partial pressures are maintained below 1.8 atm.

TABLES, METERS, AND BIOPHYSICAL MODELS
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Protocols
Operational diving requires arbitrary numbers of dives to various depths over periods of hours, and often days. Once

a standard set of decompression tables has been constructed, with bounce diving the simple case of nonstop decom-
pression, a repetitive dive procedure is a necessity. After any air dive, variable amounts of dissolved and free residual
nitrogen remain in body tissues for periods of 24 hr, and more. Similarly, elevated tissue tensions can promote, or sus-
tain, bubble growth over the same time scales. This residual gas buildup (dissolved and free) will shorten the exposure
time for subsequent repetitive dives. The longer and deeper the first dive, the greater the amount of residual tissue ni-
trogen affecting decompression on subsequent dives. Nonstop depth-time allowances for repetitive dives are reduced in
such circumstance. Within bubble models, residual free gas phases are also included in procedures, imposing additional
constraints on repetitive diving. The many possibilities are easily tracked in continuous time mode by computers, as
mentioned, but tables face a more difficult task.

Tables
Considering only dissolved gases, one standard table approach, developed by Workman, groups combinations of

depth and exposure times according to the surfacing tension in the slowest compartment. Then it is possible to account
for desaturation during any arbitrary surface interval. The remaining excess nitrogen at the start of the next dive can
always be converted into equivalent time spent at the deepest point of the dive. So called penalty time is then added to
actual dive time to updated appropriate tissue tensions. Surfacing tensions in excess of 33 f sw(absolute) in the slowest
compartment are assigned letter designations (groups), A to O, for each 2 f sw over 33 f sw. Any, and all, exposures
can be treated in this manner. To credit outgassing, a Surface Interval Table, accounting for 2 f sw incremental drops in
tensions in the slowest compartment, is also constructed. Such procedures are bases for the US Navy Air Decompression
and Repetitive Surface Interval Tables, with the 120 min compartment (the slowest) controlling repetitive activity.
Standard US Navy Tables provide safe procedures for dives up to 190 f swfor 60 min. Dives between 200 and 300 f sw
were tested and reported in the exceptional exposure US Navy tables, including a 240 min compartment. The Swiss
tables, compiled by Buhlmann, incorporate the same basic procedures, but with a notable exception. While the US
Navy tables were constructed for sea level usage, requiring some safe extrapolation procedure to altitude, the Swiss
tables are formulated and tested over a range of reduced ambient pressure. The controlling repetitive tissue in the
Buhlmann compilation is the 635 min compartment. Similar approaches focusing on deep and saturation diving have
resulted in decompression tables for helium-oxygen (heliox), helium-oxygen-nitrogen (trimix), and recent mixtures
with some hydrogen (hydrox). Clearly, the USN and Swiss Repetitive Tables can be easily converted to other (longer
or shorter) controlling tissues by arithmetic scaling of the 120 min or 635 min compartment to the desired controlling
tissue halftime (simple ratio). To scale the USN Tables to 720 min, for instance, the repetitive intervals need only be
multiplied by 720�120� 6.

While it is true that the table procedures just described are quite easily encoded in digital meters, and indeed such de-
vices exist, digital meters are capable of much more than table recitations. Pulsing depth and pressure at short intervals,
digital meters can monitor diving almost continuously, providing rapid estimates of any model parameter. When em-
ploying the exact same algorithms as tables, meters provide additional means to control and safety beyond table lookup.
When model equations can be inverted in time, meters can easily compute time remaining before decompression, time
at a stop, surface interval before flying, and optimal ascent procedure. Profiles can be stored for later analysis, and
the resulting data bank used to tune and improve models and procedures. Considering utility and functionality, meter
usage should increase in diving, supported by technological advance in computing power, algorithmic sophistication,
and general acceptance, though it will probably be some time though before tables are supplanted.

Meters
On the heels of growing interest in underwater science and exploration following World War II, monitoring devices

have been constructed to control diver exposure and decompression procedures. Devices, with records of varying suc-
cess, include mechanical and electrical analogs, and within the past 15 years, microprocessor based digital computers.
With inexpensive microprocessor technology, recent years have witnessed explosive growth in compact digital meters
usage. All use the simple dissolved tissue gas model proposed by Haldane some 80 years ago, but given the sophisti-
cation of these devices, many feel that broader models can be incorporated into meter function today, increasing their
range and flexibility. Although the biophysics of bubble formation, free and dissolved phase buildup and elimination is
formidable, and not fully understood yet, contemporary models treating both dissolved and free phases, correlated with
existing data, and consistent with diving protocols might extend the utility of diving computers. An approach treating
bubble nucleation, excitation, and growth in tissue and blood is needed. In the industry, such new models are termed
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bubble mechanical, because they focus on bubbles and their interactions with dissolved gas in tissue and blood.
Decompression computers are fairly inexpensive items these days. Basically a decompression meter is a micropro-

cessor computer consisting of a power source, pressure transducer, analog to digital signal converter, internal clock,
microprocessor chip with RAM (random access memory) and ROM (read only memory), and pixel display screen.
Pressure readings from the transducer are converted to digital format by the converter, and sent to memory with the
elapsed clock time for model calculations, usually every 1 - 3 sec. Results are displayed on the screen, including time
remaining, time at a stop, tissue gas buildup, time to flying, and other model flag points, usually Haldanean (perfusion)
tissue control variables. Some 3 - 9 volts is sufficient power to drive the computer for a couple of years, assuming about
100 dives per year. The ROM contains the model program (step application of model equations), all constants, and
queries the transducer and clock. The RAM maintains storage registers for all dive calculations ultimately sent to the
display screen. Dive computers can be worn on the wrist, incorporated in consoles, or even integrated into heads�up
displays in masks.

Statistics point to an enviable track record of decompression meter usage in nominal diving activities, as well as
an expanding user community. When coupled to slow ascent rates and safety stops, computer usage has witnessed
a very low incidence rate of decompression sickness, below 0.01% according to some reports. Computers for nitrox
are presently online today, with heliox and trimix units a rather simple modification of any nitrox unit, using existing
decompression algorithms.

Decompression Models And Algorithms
Tables and schedules for diving at sea level can be traced to a model proposed in 1908 by the eminent English

physiologist, John Scott Haldane. He observed that goats, saturated to depths of 165 feet of sea water ( f sw), did not
develop decompression sickness (DCS) if subsequent decompression was limited limited to half the ambient pressure.
Extrapolating to humans, researchers reckoned that tissues tolerate elevated dissolved gas pressures (tensions), greater
than ambient by factors of two, before the onset of symptoms. Haldane then constructed schedules which limited the
critical supersaturation ratio to two in hypothetical tissue compartments. Tissue compartments were characterized by
their halftime, τ. Halftime is also termed hal f li f e when linked to exponential processes, such as radioactive decay.
Five compartments (5, 10, 20, 40, 75 min) were employed in decompression calculations and staged procedures for fifty
years.

Some years following, in performing deep diving and expanding existing table ranges in the 1930s, US Navy
investigators assigned separate limiting tensions (M-values) to each tissue compartment. Later in the 1950s and early
1960s, other USN investigators and divers, in addressing repetitive exposures and staging regimens for the first time,
advocated the use of six tissues (5, 10, 20, 40, 80, 120 min) in constructing decompression schedules, with each tissue
compartment again possessing its own limiting tension. Temporal uptake and elimination of inert gas was based on
mechanics addressing only the macroscopic aspects of gas exchange between blood and tissue. Exact bubble production
mechanisms, interplay of free and dissolved gas phases, and related transport phenomena were not quantified, since
they were neither known nor understood. Today, we know more about dissolved and free phase dynamics, bubbles, and
transport mechanisms, but still rely heavily on the Haldane model. Inertia and simplicity tend to sustain its popularity
and use, and it has been a workhorse.

1. Bulk Diffusion Model

Diffusion limited gas exchange is modeled in time by a sum of exponential response functions, bounded by ar-
terial and initial tissue tensions. However, instead of many tissue compartments, a single bulk tissue is assumed
for calculations, characterized by a gas diffusion constant, D. Tissue is separated into intravascular (blood) and
extravascular (cells) regions. Blood containing dissolved inert and metabolic gases passes through the intravas-
cular zone, providing initial and boundary conditions for subsequent gas diffusion into the extravascular zone.
Diffusion is driven by the difference between arterial and tissue tensions, according to the strength of a single dif-
fusion coefficient, D, appropriate to the media. Diffusion solutions, averaged over the tissue domain, resemble a
weighted sum over effective tissue compartments with time constants, λ 2n�1 � α2

2n�1D, determined by diffusivity
and boundary conditions, with α 2n�1 � �2n�1�π�l for tissue thickness, l .

Applications fit the time constant, K �π2D�l2, to exposure data, with a typical value employed by the Royal Navy
given by, K � 0�007928 min�1, approximating the US Navy 120 min compartment used to control saturation,
decompression, and repetitive diving. Corresponding critical tensions in the bulk model,

M �
709P

P�404
� (127)
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fall somewhere between fixed gradient and multitissue values. At the surface, M � 53 f sw, while at 200 f sw,
M � 259 f sw. A critical gradient,

G�
P�493�P�
�P�404�

� (128)

also derives from the above. Originally, a critical gradient, G, near 30 f sw was used to limit exposures. Such
value is too conservative for deep and bounce exposures, and not conservative enough for shallow exposures.
Hempleman introduced the above relationship, providing the means to parameterize bounce and saturation diving.

Bulk diffusion models (BDM) are attractive because they permit the whole dive profile to be modeled with one
equation, and because they predict a t 1�2 behavior of gas uptake and elimination. Nonstop time limits, t n, are
related to depth, d, by the bulk diffusion relationship,

dt1�2
n �C� (129)

with approximate range, 400�C� 500 f sw min1�2, linking nonstop time and depth simply through the value of
C. For the US Navy nonstop limits, C� 500 f sw min1�2, while for the Spencer reduced limits, C� 465 f sw min1�2.
In the Wienke-Yount model, C� 400 f sw min1�2.

2. Multitissue Model

Multitissue models (MTM), variations of the original Haldane model, assume that dissolved gas exchange, con-
trolled by blood flow across regions of varying concentration, is driven by the local gradient, that is, the difference
between the arterial blood tension and the instantaneous tissue tension. Tissue response is modeled by exponential
functions, bounded by arterial and initial tensions, and perfusion constants, λ, linked to the tissue halftimes, τ, for
instance, 1, 2, 5, 10, 20, 40, 80, 120, 180, 240, 360, 480, and 720 min compartments assumed to be independent
of pressure.

In a series of dives or multiple stages, initial and arterial tensions represent extremes for each stage, or more pre-
cisely, the initial tension and the arterial tension at the beginning of the next stage. Stages are treated sequentially,
with finishing tensions at one step representing initial tensions for the next step, and so on. To maximize the rate
of uptake or elimination of dissolved gases the gradient, simply the difference between arterial and tissue tensions
is maximized by pulling the diver as close to the surface as possible. Exposures are limited by requiring that the
tissue tensions never exceed

M � M0 �∆M d� (130)

as a function of depth, d, for ∆M the change per unit depth. A set of M 0 and ∆M are listed in Table 10.

Table 10. Classical US Navy Surfacing Ratios And Critical Tensions.

halftime critical ratio critical tension tension change
τ �min� R0 M0 � f sw� ∆M

5 3.15 104 2.27
10 2.67 88 2.01
20 2.18 72 1.67
40 1.76 58 1.34
80 1.58 52 1.26

120 1.55 51 1.19

At altitude, some critical tensions have been correlated with actual testing, in which case, an effective depth, d, is
referenced to the absolute pressure, P, (in f sw),

d � P�33 (131)

with surface pressure, Ph, at elevation, h, given by,

Ph � 33 exp��0�0381h� (132)
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for h in multiples of 1,000 f t. However, in those cases where critical tensions have not been tested, nor extended,
to altitude, an exponentially decreasing extrapolation scheme, called similarity, has been employed. Extrapo-
lations of critical tensions, below P � 33 f sw, then fall off more rapidly then in the linear case. A similarity
extrapolation holds the ratio, R� M�P, constant at altitude. Estimating minimum surface tension pressure of
bubbles near 10 f sw, as a limit point, the similarity extrapolation might be limited to 10,000 f t in elevation, and
neither for decompression nor heavy repetitive diving.

Models of dissolved gas transport and coupled bubble formation are not complete, and all need correlation with
experiment and wet testing. Extensions of basic (perfusion and diffusion) models can redress some of the dif-
ficulties and deficiencies, both in theory and application. Concerns about microbubbles in the blood impacting
gas elimination, geometry of the tissue region with respect to gas exchange, penetration depths for gas diffu-
sion, nerve deformation trigger points for pain, gas uptake and elimination asymmetry, effective gas exchange
with flowing blood, and perfusion versus diffusion limited gas exchange, to name a few, motivate a number of
extensions of dissolved gas models.

The multitissue model addresses dissolved gas transport with saturation gradients driving the elimination. In the
presence of free phases, free-dissolved and free-blood elimination gradients can compete with dissolved-blood
gradients. One suggestion is that the gradient be split into two weighted parts, the free-blood and dissolved-blood
gradients, with the weighting fraction proportional to the amount of separated gas per unit tissue volume. Use
of a split gradient is consistent with multiphase flow partitioning, and implies that only a portion of tissue gas
has separated, with the remainder dissolved. Such a split representation can replace any of the gradient terms in
tissue response functions.

If gas nuclei are entrained in the circulatory system, blood perfusion rates are effectively lowered, an impairment
with impact on all gas exchange processes. This suggests a possible lengthening of tissue halftimes for elim-
ination over those for uptake, for instance, a 10 min compartment for uptake becomes a 12 min compartment
on elimination. Such lengthening procedure and the split elimination gradient obviously render gas uptake and
elimination processes asymmetric. Instead of both exponential uptake and elimination, exponential uptake and
linear elimination response functions can be used. Such modifications can again be employed in any perfusion
model easily, and tuned to the data.

3. Thermodynamic Model

The thermodynamic model (TM) suggested by Hills, and extended by others, is more comprehensive than earlier
models, addressing a number of issues simultaneously, such as tissue gas exchange, phase separation, and phase
volume trigger points. This model is based on phase equilibration of dissolved and separated gas phases, with
temporal uptake and elimination of inert gas controlled by perfusion and diffusion. From a boundary (vascular)
thin zone, gases diffuse into the cellular region. Radial, one dimensional, cylindrical geometry is assumed as
a starting point, though the extension to higher dimensionality is straightforward. As with all dissolved gas
transfer, diffusion is controlled by the difference between the instantaneous tissue tension and the venous tension,
and perfusion is controlled by the difference beween the arterial and venous tension. A mass balance for gas
flow at the vascular cellular interface, enforces the perfusion limit when appropriate, linking the diffusion and
perfusion equations directly. Blood and tissue tensions are joined in a complex feedback loop. The trigger point
in the thermodynamic model is the separated phase volume, related to a set of mechanical pain thresholds for
fluid injected into connective tissue.

The full thermodynamic model is complex, though Hills has performed massive computations correlating with the
data, underscoring basic model validity. Free phase dynamics (phase volume limits) impart deeper decompression
staging formats, compared to considerations of critical tensions, and are characteristic of phase models. Full
blown bubble models require the same, simply to minimize bubble excitation and growth.

4. Varying Permeability Model

The varying permeability model (VPM) treats both dissolved and free phase transfer mechanisms, postulating the
existence of gas seeds (micronuclei) with permeable skins of surface active molecules, small enough to remain in
solution and strong enough to resist collapse. The model is based upon laboratory studies of bubble growth and
nucleation.
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Inert gas exchange is driven by the local gradient, the difference between the arterial blood tension and the
instantaneous tissue tension. Compartments with 1, 2, 5, 10, 20, 40, 80, 120, 240, 480, and 720 halftimes, τ, are
again employed. While, classical (Haldane) models limit exposures by requiring that the tissue tensions never
exceed the critical tensions, fitted to the US Navy nonstop limits, for example, the varying permeability model,
however, limits the supersaturation gradient, through the phase volume constraint. An exponential distribution
of bubble seeds, falling off with increasing bubble size is assumed to be excited into growth by compression-
decompression. A critical radius, r c, separates growing from contracting micronuclei for given ambient pressure,
Pc. At sea level, Pc � 33 f sw, rc � �8 microns. Deeper decompressions excite smaller, more stable, nuclei. Within

this phase volume constraint, a set of nonstop limits, tn, at depth, d, satisfy a modified law, dt1�2
n � 400 f sw min1�2,

with gradient, G, extracted for each compartment, τ, using the nonstop limits and excitation radius, at generalized
depth, d � P� 33 f sw. Table 11 summarize tn, G0, ∆G, and δ, the depth at which the compartment begins to
control exposures.

Table 11. Critical Phase Volume Time Limits.

depth nonstop limit depth nonstop limit
d � f sw� tn �min� d � f sw� tn �min�

30 250. 130 9.0
40 130. 140 8.0
50 73. 150 7.0
60 52. 160 6.5
70 39. 170 5.8
80 27. 180 5.3
90 22. 190 4.6

100 18. 200 4.1
110 15. 210 3.7
120 12. 220 3.1

Gas filled crevices can also facilitate nucleation by cavitation. The mechanism is responsible for bubble formation
occuring on solid surfaces and container walls. In gel experiments, though, solid particles and ragged surfaces
were seldom seen, suggesting other nucleation mechanisms. The existence of stable gas nuclei is paradoxical.
Gas bubbles larger than 1 µm should float to the surafce of a standing liquid or gel, while smaller ones should
dissolve in a few sec. In a liquid supersaturated with gas, only bubbles at the critical radius, r c, would be in
equilibrium (and very unstable equilibrium at best). Bubbles larger than the critical radius should grow larger,
and bubbles smaller than the critical radius should collapse. Yet, the Yount gel experiments confirm the existence
of stablegas phases, so no matter what the mechanism, effective surface tension must be zero. Although the
actual size distribution of gas nuclei in humans is unknown, these experiments in gels have been correlated with
a decaying exponential (radial) distribution function. For a stabilized distribution accommodated by the body at
fixed pressure, Pc, the excess number of nuclei excited by compression-decompression must be removed from the
body. The rate at which gas inflates in tissue depends upon both the excess bubble number, and the supersaturation
gradient, G. The critical volume hypothesis requires that the integral of the product of the two must always remain
less than some volume limit point, α V , with α a proportionality constant.

5. Reduced Gradient Bubble Model

The reduced gradient bubble model (RGBM) extends the earlier VPM naturally. The full blown RGBM treats
coupled perfusion-diffusion transport as a two step flow process, with blood flow (perfusion) serving as a bound-
ary condition for tissue gas penetration by diffusion. Depending on time scales and rate coefficients, one or
another (or both) processes dominate the exchange. However, for most meter implementations, perfusion is as-
sumed to dominate, simplifying matters and permitting online calculations. Additionally, tissues and blood are
naturally undersaturated with respect to ambient pressure at equilibration through the mechanism of biological
inherent unsaturation (oxygen window), and the model includes this debt in calculations.
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The RGBM assumes that a size distribution of seeds (potential bubbles) is always present, and that a certain
number is excited into growth by compression-decompression. An iterative process for ascent staging is employed
to control the inflation rate of these growing bubbles so that their collective volume never exceeds a phase volume
limit point. Gas mixtures of helium, nitrogen, and oxygen contain bubble distributions of different sizes, but
possess the same phase volume limit point.

The RGBM postulates bubble seeds with varying permeability. Bubble skins are assumed permeable down to
10 atmcrushing pressure. The size of seeds excited into growth is inversely proportional to the supersaturation
gradient. Beyond 10 atm, bubble seeds permit gas diffusion at a slower rate. The model assumes bubble skins
are stabilized by surfactants over unknown time scales, but that the seeds are persistent in the body. Bubble skins
are probably molecularly activated, complex, biosubstances found throughout the body. Whatever the formation
process, the model assumes the size distribution is exponentially decreasing in size, that is, more smaller seeds
than larger seeds in exponential proportions.

The model incorporates a spectrum of tissue compartments, ranging from 1 min to 720 min, depending on gas
mixture (helium, nitrogen, oxygen). Phase separation and bubble growth in slower compartments is a central
focus in calculations, and the model uses nonstop time limits tuned to recent Doppler measurements, conserva-
tively reducing them along the lines originally sugested by Spencer (and others), but within the phase volume
constraint.

The RGBM reduces the phase volume limit in multidiving by considering free phase elimination and buildup
during surface intervals, depending on altitude, time, and depth of previous profiles, Repetitive, multiday, and
reverse profile exposures are tracked and impacted by critical phase volume reductions over appropriate time
scales. The model generates replacement bubble seed distributions on time scales of days, adding new bubbles to
existing bubbles in calculations. Phase volume limit points are also reduced by the added effects of new bubbles.

The reduced gradient bubble model extends the varying permeability model to repetitive diving, by conservatively
reducing the gradients, G. A conservative set of bounce gradients, G, can always be used for multiday and
repetitive diving, provided they are multiplicatively reduced by a set of bubble factors, all less than one. Three
bubble factors reduce the driving gradients to maintain the phases volume constraint. The first bubble factor
reduces G to account for creation of new stabilized micronuclei over time scales of days. The second factor
accounts for additional micronuclei excitation on reverse profile dives. The third bubble factor accounts for
bubble growth over repetitive exposures on time scales of hours.

The RGBM and VPM are both diveware implementations, accessible on the Internet at various sites. Additionally,
the RGBM has been encoded into a number of commercial decompression meter products. Specific comparisons
between RGBM and Haldane predictions for staging can be found at this (Fatbrain) site too, with resultants
generic to phase versus dissolved gas models.

6. Tissue Bubble Diffusion Model

The tissue bubble diffusion model (TBDM), according to Gernhardt and Vann, considers the diffusive growth of
an extravascular bubble under arbitrary hyperbaric and hypobaric loadings. The approach incorporates inert gas
diffusion across the tissue-bubble interface, tissue elasticity, gas solubility and diffusivity, bubble surface tension,
and perfusion limited transport to the tissues. Tracking bubble growth over a range of exposures, the model can
be extended to oxygen breathing and inert gas switching. As a starting point, the TBDM assumes that, through
some process, stable gas nuclei form in the tissues during decompression, and subsequently tracks bubble growth
with dynamical equations. Diffusion limited exchange is invoked at the tissue-bubble interface, and perfusion
limited exchange is assumed between tissue and blood, very similar to the thermodynamic model, but with free
phase mechanics. Across the extravascular region, gas exchange is driven by the pressure difference between
dissolved gas in tissue and free gas in the bubble, treating the free gas as ideal. Initial nuclei in the TBDM have
assumed radii near 3 micronsat sea level, to be compared with .8 micronsin the VPM and RGBM.

As in any free phase model, bubble volume changes become more significant at lower ambient pressure, suggest-
ing a mechanism for enhancement of hypobaric bends, where constricting surface tension pressures are smaller
than those encountered in hyperbaric cases. Probabilistically, the model has been bootstrapped to statistical like-
lihood, correlating bubble size with decompression risk, a topic discussed further on. Then, a theoretical bubble
dose of 5 ml correlates with a 20% risk of decompression sickness, while a 35 ml dose correlates with a 90% risk,
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with the bubble dose representating an unnormalized measure of the separated phase volume. Coupling bubble
volume to risk represents yet another extension of the phase volume hypothesis, a viable trigger point mechanism
for bends incidence.

Empirical Practices
Utilitarian procedures, entirely consistent with phase mechanics and bubble dissolution time scales, have been

developed under duress, and with trauma, by Australian pearl divers and Hawaiian diving fishermen, for both deep
and repetitive diving with possible in-water recompression for hits. While the science behind such procedures was
not initially clear, the operational effectiveness was always noteworthy and could not be discounted easily. Later, the
rationale, essentially recounted in the foregoing, became clearer.

Pearling fleets, operating in the deep tidal waters off northern Australia, employed Okinawan divers who regularly
journeyed to depths of 300 f sw for as long as one hour, two times a day, six days per week, and ten months out of the
year. Driven by economics, and not science, these divers developed optimized decompression schedules empirically.
As reported by Le Messurier and Hills, deeper decompression stops, but shorter decompression times than required by
Haldane theory, were characteristics of their profiles. Such protocols are entirely consistent with minimizing bubble
growth and the excitation of nuclei through the application of increased pressure, as are shallow safety stops and
slow ascent rates. With higher incidence of surface decompression sickness, as might be expected, the Australians
devised a simple, but very effective, in-water recompression procedure. The stricken diver is taken back down to
30 f sw on oxygen for roughly 30 minutesin mild cases, or 60 minutesin severe cases. Increased pressures help to
constrict bubbles, while breathing pure oxygen maximizes inert gas washout (elimination). Recompression time scales
are consistent with bubble dissolution experiments.

Similar schedules and procedures have evolved in Hawaii, among diving fishermen, according to Farm and Hayashi.
Harvesting the oceans for food and profit, Hawaiian divers make beween 8 and 12 dives a day to depths beyond 350
f sw. Profit incentives induce divers to take risks relative to bottom time in conventional tables. Three repetitive dives
are usually necessary to net a school of fish. Consistent with bubble and nucleation theory, these divers make their
deep dive first, followed by shallower excursions. A typical series might start with a dive to 220 f sw, followed by 2
dives to 120 f sw, and culminate in 3 or 4 more excursions to less than 60 f sw. Often, little or no surface intervals
are clocked between dives. Such types of profiles literally clobber conventional tables, but, with proper reckoning of
bubble and phase mechanics, acquire some credibility. With ascending profiles and suitable application of pressure, gas
seed excitation and any bubble growth are constrained within the body’s capacity to eliminate free and dissolved gas
phases. In a broad sense, the final shallow dives have been tagged as prolonged safety stops, and the effectiveness of
these procedures has been substantiated in vivo (dogs) by Kunkle and Beckman. In-water recompression procedures,
similar to the Australian regimens, complement Hawaiian diving practices for all the same reasons.

While the above practices developed by trial-and-error, albeit with seeming principle, venous gas emboli measure-
ments, performed off Catalina by Pilmanis on divers making shallow safety stops, fall into the more scienti f iccategory
perhaps. Contrasting bubble counts following bounce exposures near 100 f sw, with and without zonal stops in the
10-20 f sw range, marked reductions (factors of 4 to 5) in venous gas emboli were noted when stops were made. If, as
some suggest, venous gas emboli in bounce diving correlate with bubbles in sites such as tendons and ligaments, then
safety stops probably minimize bubble growth in such extravascular locations. In these tests, the sample population was
small, so additional validation and testing is warranted.

DECOMPRESSION RISK AND STATISTICS

Systematics And Issues
The systematics of gas exchange, nucleation, bubble growth and elimination, and decompression are so complicated

that theories only reflect pieces of the puzzle. Computational algorithms, tables, and manned testing are requisite across
a spectrum of activities. And the potential of electronic devices to process tables of information or detailed equations
underwater is near maturity, with virtually any algorithm or model amenable to digital implementation. Pressures for
even more sophisticated algorithms are expected to grow.

Still computational models enjoy varying degrees of success or failure. More complex models address a greater
number of issues, but are harder to codify in decompression tables. Simpler models are easier to codify, but are less
comprehensive. Some models are based on first principles, but many are not. Application of models can be subjective
in the absence of definitive data, the acquisition of which is tedious, sometimes controversial, and often ambiguous.
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If deterministic models are abandoned, statistical analysis can address the variability of outcome inherent to random
occurrences, but only in manner indifferent to specification of controlling mechanisms. The so called dose-reponse
characteristics of statistical analysis are very attractive in the formulation of risk tables. Applied to decompression
sickness incidence, tables of comparative risk offer a means of weighing contributing factors and exposure alternatives.
At the basis of statistical and probabilistic analyses of decompression sickness is the binomial distribution. The binomial
distribution is the fundamental frequency distribution governing random events.

Binomial Distribution
Decompression sickness is a hit, or no hit, situation. Statistics are binary, as in coin tossing. Probabilities of

occurrence are determined from the binomial distribution, which measures the numbers of possibilities of occurrence
and nonoccurrence in any number of events, given the incidence rate. Specifically, the probability, P, in a random
sample of size, N, for n occurrences of decompression sickness and m nonoccurrences, takes the form,

P�n� �
N!

n! m!
pnqm � (133)

with,
n�m� N � (134)

p the underlying incidence rate (average number of cases of decompression sickness), and q,

q� 1� p � (135)

the underlying nonincidence. The discrete probability distributions, P, are the individual terms of the binomial expan-
sion of �p�q�N,

�p�q�N �
N

∑
n�0

P�n� � 1 � (136)

In risk analysis, p and q are also the failure and success rates, gleaned, for instance, from random or strategic sampling
of arbitrary lot sizes. Obviously, the larger the sample size, the better are the estimates of p or q. Once p or q is
determined, the binomial statistics and probabilities are also fixed. The statistical mean, M, and variance, s, are given
by,

M �
N

∑
n�1

nP�n� � pN � (137)

s�
N

∑
n�1

�n�M�2 P�n� � pqN � (138)

the usual measures of a statistical distribution. The square root of the variance is the standard deviation. The cumulative
probability for more than n cases of decompression sickness, P��n�, is written,

P��n� �
N

∑
j�n�1

P� j� � 1�
n

∑
j�0

P� j� � (139)

and the probability of less than n cases, P��n�, is similarly,

P��n� �
n�1

∑
j�0

P� j� � 1�
N

∑
j�n

P� j� � (140)

The probability of nonoccurrence in any set of N trials is simply,

P�0� � qN � (141)

while the probability of total occurrence in the same number, N, of trials is given by,

P�N� � pN � (142)
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The binomial distribution is a special case of the multinomial distribution describing processes in which several
results having fixed probabilities, pl , ql , for l � 1� L, are possible. Separate probabilities are given by the individual
terms in the general multinomial expansion,

�p1 �q1 � ���� pL�qL�
N �

N

∑
n1�����nL�1�0

P�n1� ����nL�1� � 1 � (143)

as in the binomial case. The normal distribution is a special case of the binomial distribution when N is very large and
variables are not necessarily confined to integer values. The Poisson distribution is another special case of the binomial
distribution when the number of events, N, is also large, but the incidence, p, is small.

Normal Distribution
The normal distribution is an analytic approximation to the binomial distribution when N is very large, and n, the

observed value (success or failure rate), is not confined to integer values, but ranges continuously,

�∞� n� ∞ � (144)

Normal distributions thus apply to continuous observables, while binomial and Poisson distributions apply to discon-
tinuous observables. Statistical theories of errors are ordinarily based on normal distributions.

For the same mean, M � pN, and variance, s� pqN, the normal distribution, P, written as a continuously varying
function of n,

P�n� �
1

�2πs�1�2
exp�� �n�M�2�2s� � (145)

is a good approximation to the binomial distribution in the range,

1
N�1

� p�
N

N�1
� (146)

and within three standard deviations of the mean,

pN�3 �pqN�1�2 � n� pN�3 �pqN�1�2 � (147)

The distribution is normalized to one over the real infinite interval,
� ∞

�∞
Pdn� 1 � (148)

The probability that a normally distributed variable, n, is less than or equal to b is,

P��b� �
� b

�∞
Pdn � (149)

while the corresponding probability that n is greater than or equal to b is,

P��b� �
� ∞

b
Pdn � (150)

The normal distribution is extremely important in statistical theories of random variables. By the central limit the-
orem, the distribution of sample means of identically distributed random variables is approximately normal, regardless
of the actual distribution of the individual variables.

Poisson Distribution
The Poisson distribution is a special case of the binomial distribution when N becomes large, and p is small, and

certainly describes all discrete random processes whose probability of occurrence is small and constant. The Poisson
distribution applies substantially to all observations made concerning the incidence of decompression sickness in diving,
that is, p�� 1 as the desired norm. The reduction of the binomial distribution to the Poisson distribution follows from
limiting forms of terms in the binomial expansion, that is, P�n�.
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In the limit as N becomes large, and p is much smaller than one, we have,

N!
�N�n�!

� Nn � (151)

qm � �1� p�N�n � exp��pN� � (152)

and therefore the binomial probability reduces to,

P�n� �
Nnpn

n!
exp��pN� �

Mn

n!
exp��M� � (153)

which is the discrete Poisson distribution. The mean, M, is given as before,

M � pN (154)

and the variance, s, has the same value,
s� pN � (155)

because q is approximately one. The cumulative probabilities, P��n� and P��n�, are the same as those defined in the
binomial case, a summation over discrete variable, n. It is appropriate to employ the Poisson approximation when
p� 0�10, and N � 10 in trials. Certainly, from a numerical point of view, the Poisson distribution is easier to use than
than binomial distribution. Computation of factorials is a lesser task, and bookkeeping is minimal for the Poisson case.

In addition to the incidence of decompression sickness, the Poisson distribution describes the statistical fluctuations
in such random processes as the number of cavalry soldiers kicked and killed by horses, the disintegration of atomic
nuclei, the emission of light quanta by excited atoms, and the appearance of cosmic ray bursts. It also applies to most
rare diseases.

Probabilistic Decompression
Table 12 lists corresponding binomial decompression probabilities, P�n�, for 1% and 10% underlying incidence

(99% and 90% nonincidence), yielding 0, 1, and 2 or more cases of decompression sickness. The underlying incidence,
p, is the (fractional) average of hits.

As the number of trials increases, the probability of 0 or 1 occurrences drops, while the probability of 2 or more
occurences increases. In the case of 5 dives, the probability might be as low as 5%, while in the case of 50 dives, the
probability could be 39%, both for p � 0�01. Clearly, odds even percentages would require testing beyond 50 cases
for an underlying incidence near 1%. Only by increasing the number of trials for fixed incidences can the probabilities
be increased. Turning that around, a rejection procedure for 1 or more cases of decompression sickness at the 10%
probability level requires many more than 50 dives. If we are willing to lower the confidence of the acceptance, or
rejection, procedure, of course, the number of requisite trials drops. Table 12 also shows that the test practice of
accepting an exposure schedule following 10 trials without incidence of decompression sickness is suspect, merely
because the relative probability of nonincidence is high, near 35%.

Questions as to how safe are decompression schedules have almost never been answered satisfactorily. As seen,
large numbers of binary events are required to reliably estimate the underlying incidence. One case of decompression
sickness in 30 trials could result from an underlying incidence, p, bounded by 0.02 and 0.16 roughly. Tens more of
trials are necessary to shrink those bounds.
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Table 12. Probabilities Of Decompression Sickness For Underlying Incidences.

P�n� P�n�
N (dives) n (hits) p� �01 p� �10

q� �99 q� �90
5 0 .95 .59

1 .04 .33
2 or more .01 .08

10 0 .90 .35
1 .09 .39

2 or more .01 .26
20 0 .82 .12

1 .16 .27
2 or more .02 .61

50 0 .61 .01
1 .31 .03

2 or more .08 .96

Biological processes are highly variable in outcome. Formal correlations with outcome statistics are then generally
requisite to validate models against data. Often, this correlation is difficult to firmly establish (couple of percent) with
fewer than 1,000 trial observations, while ten percent correlations can be obtained with 30 trials, assuming binomial
distributed probabilities. For decompression analysis, this works as a disadvantage, because often the trial space of dives
is small. Not discounting the possibly small trial space, a probabilistic approach to the occurrence of decompression
sickness is useful and necessary. One very successful approach, developed and tuned by Weathersby, and others for
decompression sickness in diving, called maximum likelihood, applies theory or models to diving data and adjusts the
parameters until theoretical prediction and experimental data are in as close agreement as possible.

Validation procedures require decisions about uncertainty. When a given decompression procedure is repeated with
different subjects, or the same subjects on different occasions, the outcome is not constant. The uncertainty about the
occurrence of decompression sickness can be quantified with statistical statements, though, suggesting limits to the
validation procedure. For instance, after analyzing decompression incidence statistics for a set of procedures, a table
designer may report that the procedure will offer an incidence rate below 5%, with 90% confidence in the statement.
Alternatively, the table designer can compute the probability of rejecting a procedure using any number of dive trials,
with the rejection criteria any arbitrary number of incidences. As the number of trials increases, the probability of
rejecting a procedure increases for fixed incidence criteria. In this way, relatively simple statistical procedures can
provide vital information as to the number of trials necessary to validate a procedure with any level of acceptable risk,
or the maximum risk associated with any number of incidences and trials.

One constraint usually facing the statistical table designer is a paucity of data, that is, number of trials of a procedure.
Data on hundreds of repetitions of a dive profile are virtually nonexistent, excepting bounce diving perhaps. As seen,
some 30-50 trials are requisite to ascertain procedure safety at the 10% level. But 30-50 trials is probably asking
too much, is too expensive, or generally prohibitive. In that case, the designer may try to employ global statistical
measures linked to models in a more complex trial space, rather than a single profile trial space. Integrals of risk
parameters, such as bubble number, supersaturation, separated phase, etc., over exposures in time, can be defined as
probability measures for incidence of decompression sickness, and the maximum likelihood method then used to extract
appropriate constants.

Maximum Likelihood
We can never measure any physical variable exactly, that is, without error. Progressively more elaborate experimen-

tal or theoretical efforts only reduce the possible error in the determination. In extracting parameter estimates from data
sets, it is necessary to also try to minimize the error (or data scatter) in the extraction process. A number of techniques
are available to the analyst, including the well known maximum likelihood approach.

The measure of any random occurrence, p, can be a complicated function of many parameters, x� �x k�k � 1�K�,
with the only constraint,

0� p�x�� 1 � (156)
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for appropriate values of the set, x. The measure of nonoccurence, q, is then by conservation of probability,

q�x� � 1� p�x� � (157)

over the same range,
0� q�x�� 1 � (158)

Multivalued functions, p�x�, are often constructed, with specific form dictated by theory or observation over many
trials or tests. In decompression applications, the parameters, x, may well be the bubble-nucleation rate, number of
venous gas emboli, degree of supersaturation, amount of pressure reduction, volume of separated gas, ascent rate, or
combinations thereof. Parameters may also be integrated in time in any sequence of events, as a global measure, though
such measures are more difficult to analyze over arbitrary trial numbers.

The likelihood of any outcome, Φ, of N trials is the product of individual measures of the form,

Φ�n� � pnqm � pn�1� p�m � (159)

given n cases of decompression sickness and mcases without decompression sickness, and,

n�m� N � (160)

The natural logarithm of the likelihood, Ψ, is easier to use in applications, and takes the form,

Ψ� ln Φ� n ln p�m ln �1� p� � (161)

and is maximized when,
∂Ψ
∂p

� 0 � (162)

In terms of the above, we then must have,
n
p
�

m
1� p

� 0 � (163)

trivially requiring,

p�
n

n�m
�

n
N

� (164)

1� p� q�
m

n�m
�

m
N

� (165)

Thus, the likelihood function is maximized when p is the actual incidence rate, and q is the actual nonincidence rate.
The multivalued probability functions, p�x�, generalize in the maximization process according to,

∂Ψ
∂p

�
K

∑
k�1

∂Ψ
∂xk

∂xk

∂p
� 0 � (166)

satisfied when,
∂Ψ
∂xk

� 0 f or k� 1� K � (167)

In application, such constraints are most easily solved on computers, with analytical or numerical methods.
In dealing with a large number of decompression procedures, spanning significant range in depth, time, and envi-

ronmental factors, an integrated approach to maximum likelihood and risk is necessary. Integral measures, p�x� t� and
q�x� t�, can be defined over assumed decompression risk, ζ�x� t�,

p�x� t� � 1�exp

�
�

� t

0
ζ�x� t ��dt�

�
� (168)

q�x� t� � exp

�
�

� t

0
ζ�x� t ��dt�

�
� (169)

with t � any convenient time scale, and ζ any assumed risk, such as bubble number, saturation, venous emboli count,
etc. as mentioned. Employing p�x� t� and q�x� t� in the likelihood function, and then maximizing according to the
data, permits maximum likelihood estimation of ζ�x� t�. Such an approach can be employed in decompression table
fabrication, yielding good statistical estimates on incidence rates as a function of exposure factors.
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Saturation Bends Probability
Many factors contribute to bends susceptibility. Age, obesity, temperature, physical condition, alcohol, and cigarettes

are a few. Whatever the contributing factors, the distribution of bends depths for saturation exposures has been char-
acterized in terms of the saturation tension, Q, and ambient pressure, P. by Hills. This characterization is not only of
academic interest, but is also useful in assigning formal risk to decompression formats.

The distribution of saturation bends depths, χ, fits a Weibull function. This is true for all breathing mixtures, nitrox,
heliox, trimix, etc. If cumulative fraction of air bends cases up to G is χ, the survivor fraction, 1�χ, satifies,

ln �1�χ� ��
�

G�14�3
25�1

�4�73

(170)

for cumulative bends probability, χ, the usual integral over bends risk, ζ, as a function of gradient, G,

χ �
� G

0
ζ�G��dG� (171)

with saturation bends gradient, G, measured in f sw,

G� Q�P (172)

As the gradient grows, the survivor function approaches zero exponentially. The smallest bends gradient is 14.3 f sw,
which can be contrasted with the average value of 26.5 f sw. The root mean square gradient is 27.5 f sw. At 27 f sw, the
survivor fraction is 0.96, while 67% of survivors fall in the range, 26�5�7�6 f sw, with 7.6 f sw the standard deviation.
For gas mixtures other than air, the general form is given by,

ln �1�χ� ��ε
�
�Pf �20�5�
�Pi�33�0�

�
1
fi

�δ
(173)

where fi is the total volume fraction of inert breathing gases, for G� Pf �Pi , and with ε, δ constants.
The efficiency of the Weibull distribution in providing a good fit to the saturation data is not surprising. The Weibull

distribution enjoys success in reliability studies involving multiplicities of fault factors. It obviously extends to any set
of hyperbaric or hypobaric exposure data, using any of the many parameter risk variables described above.

Table And Profile Risks
A global statistical approach to table fabrication consists of following a risk measure, or factor p, throughout and

after sets of exposures, tallying the incidence of DCI, and then applying maximum likelihood to the risk integral in
time, extracting any set of risk constants optimally over all dives in the maximization procedure. In analyzing air and
helium data, Weathersby assigned risk as the difference between tissue tension and ambient pressure divided by ambient
pressure. One tissue was assumed, with time constant ultimately fixed by the data in ensuing maximum likelihood
analysis. The measure of nonincidence, q, was taken to be the exponential of risk integrated over all exposure time,

q�κ�τ� � exp

�
�

� ∞

0
ζ�κ�τ� t ��dt�

�
� (174)

ζ�κ�τ� t �� � κ
p�t ��� pa

pa
� (175)

with κ a constant determined in the likelihood maximization, pa ambient pressure, and p�t �� the instantaneous Haldane
tension for tissue with halftime, τ, also determined in the maximization process, corresponding to arbitrary tissue
compartments for the exposure data. Other more complex likelihood functions can also employed, for instance, the
separated phase volume according to the varying permeability and reduced gradient bubble models,

ζ�κ�ξ�τ� t �� � κΛG�t �� � (176)

Λ �

�
1�

r
ξ

�
� (177)
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with Λ the permissible bubble excess, r the bubble radius, G the bubble diffusion gradient (dissolved-free gas), and κ
and ξ constants determined in the fit maximization of the data. Another risk possibility is the tissue ratio,

ζ�κ�τ� t �� � κ
p�t ��
pa

� (178)

a measure of interest in altitude diving applications.
Hundreds of air dives were analyzed using this procedure, permitting construction of decompression schedules with

95% and 99% confidence (5% and 1% bends probability). These tables were published by US Navy investigators, and
Table 13 tabulates the corresponding nonstop time limits (p � 0�05�0�01), and also includes the standard US Navy
(Workman) limits for comparison. Later re-evaluations of the standard set of nonstop time limits estimate a probability
rate of 1.25% for the limits. In actual usage, the incidence rates are below 0.001%, because users do not dive to the
limits generally.

Table 13. Nonstop Time Limits For 1% And 5% DCI Probability.

depth nonstop limit nonstop limit nonstop limit
d � f sw� tn �min� tn �min� tn �min�

P� �05 P� �01 US Navy
30 240 170
40 170 100 200
50 120 70 100
60 80 40 60
70 80 25 50
80 60 15 40
90 50 10 30

100 50 8 25
110 40 5 20
120 40 5 15
130 30 5 10

For the past 10-15 years, a probabilistic approach to assessing risk in diving has been in vogue. Sometimes this can
be confusing, or misleading, since definitions or terms, as presented, are often mixed. Also confusing are risk estimates
varying by factors of 10 to 1,000, and distributions serving as basis for analysis, also varying in size by the same factors.
So, before continuing with a risk analysis of recreational profiles, a few comments are germane.

Any set of statistical data can be analyzed directly, or sampled in smaller chunks. The smaller sets (samples)
may or may not reflect the parent distribution, but if the analyst does his work correctly, samples reflecting the parent
distribution can be extracted for study. In the case of dive profiles, risk probabilities extracted from sample profiles try
to reflect the incidence rate, p, of the parent distribution (N profiles, and p underlying DCI rate). The incidence rate,
p, is the most important metric, followed by the shape of the distribution in total as measured by the variance, s. For
smaller sample of profile size, K � N, we have mean incidences, Q, for sample incidence rate, r ,

Q� rK (179)

and variance, v,
v� r�1� r�K (180)

By the central limit theorem, the distribution of sample means, Q, is normally distributed about parent (actual) mean,
M, with variance, v� s�K. Actually, the distribution of sample means, Q, is normally distributed no matter what the
distribution of samples. This important fact is the basis for error estimation with establishment of confidence intervals,
χ, for r , with estimates denoted, r�,

r� � r�χ
� s

K

�1�2
(181)

0 � χ � 1 (182)
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The sample binomial probability, B�k�, is analogously,

B�k� �
K!

k! j!
rk�1� r� j (183)

with k� j � K, for k the number of DCI hits, normalized,

K

∑
k�1

B�k� � 1 (184)

and with property, if K � ∞, then B�k�� 0, when, r �� 1.
For example, if 12 cases of DCI are reported in a parent set of 7,896 profiles, then,

N � 7896 (185)

p�
12

7896
� �0015 (186)

Smaller samples might be used to estimate risk, via sample incidence, r , with samples possibly chosen to reduce
computer processing time, overestimate p for conservancy sake, focus on a smaller subregion of profiles, or any other
reason. Thus, one might nest all 12 DCI incidence profiles in a smaller sample, K � 1�000, so that the sample risk,
r � 12�1�000� 0�012, is larger than p. Usually though the analyst wishes to mirror the parent distribution in the sample.
If the parent is a set of benign, recreational, no decompression, no multiday dive profiles, and the sample mirrors the
parent, then both risks, p and r , are are reasonably true measures of actual risk associated with recreational diving. If
sample distributions chosen are not representative of the class of diving performed, risk estimates are not trustworthy.
For instance, if a high risk set of mixed gas decompression profiles were the background against which recreational
dive profiles were compared, all estimates would be skewed and faulty (actually underestimated in relative risk, and
overestimated in absolute risk). For this parent set, N is large, p is small, with mean, M � pN� 0�0015�7896� 12,
and the applicable binomial statistics smoothly transition to Poisson representation, convenient for logarithmic and
covariant numerical analysis (on a computer). Additionally, any parent set may be a large sample of a megaset, so that
p is itself an estimate of risk in the megaset.

Turns out that our parent distribution above is just that, a subset of larger megaset, namely, the millions and millions
of recreational dives performed and logged over the past 30 years, or so. The above set of profiles was collected in
training and vacation diving scenarios. The set is recreational (no decompression, no multiday, light, benign) and
representative, with all the distribution metrics as listed. For reference and perspective, sets of recreational profiles
collected by others (Gilliam, NAUI, PADI, YMCA, DAN) are similar in context, but larger in size, N, and smaller in
incidence rate, p. Data and studies reported by many sources quote, N � 1�000�000, with, p � 0�00001 � 0�001%.
Obviously our set has higher rate, p, though still nominally small, but the same shape. So our estimates will be liberal
(overestimate risk).

To perform risk analysis, a risk estimator need be employed. For diving, dissolved gas and phase estimators are
useful. Two, detailed earlier, are used here. First is the dissolved gas supersaturation ratio, historically coupled to
Haldane models, φ,

φ� κ
p�λpa

pa
(187)

and second, ψ, is the separated phase, invoked by phase models,

ψ � γ
�

1�
r
ξ

�
G (188)

For simplicity, the asymptotic exposure limit is used in the likelihood integrals for both risk functions,

1� r�κ�λ� � exp

�
�

� ∞

0
φ�κ�λ� t�dt

�
(189)

1� r�γ�ξ� � exp

�
�

� ∞

0
ψ�γ�ξ� t�dt

�
(190)
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with hit�no hit, likelihood function, Ω, of form,

Ω �
K

∏
k�1

Ωk (191)

Ωk � rδk
k �1� rk�

1�δk (192)

where, δk � 0 if DCI does not occur in profile, k, or, δk � 1 if DCI does occur in profile, k. To estimate κ, λ, γ, and
ξ in maximum likelihood, a modified Levermore-Marquardt algorithm is employed (SNLSE, Common Los Alamos
Applied Mathematical Software Library), just a nonlinear least squares data fit to an arbitrary function (minimization of
variance over K datapoints here), with L1 error norm. Additionally, using a random number generator for profiles across
1,000 parallel SMP (Origin 2000) processors at LANL, we construct 1,000 subsets, with K � 2�000 and r � 0�006, for
separate likelihood regression analysis, averaging κ, λ, γ, and ξ by weighting the inverse variance.

For recreational diving, both estimators are roughly equivalent, because little dissolved gas has separated into free
phases (bubbles). Analysis shows this true for all cases examined, in that estimated risks for both overlap at the 95%
confidence level. The only case where dissolved gas and phase estimators differ (slightly here) is within repetitive diving
profiles. The dissolved gas estimator cues on gas buildup in the slow tissue compartments (staircasing for repets within
an hour or two), while the phase estimator cues on bubble gas diffusion in the fast compartments (dropping rapidly over
hour time spans). This holding true within all recreational diving distributions, we proceed to the risk analysis.

Nonstop limits (NDLs), denoted tn as before, from the US Navy, PADI, and NAUI Tables, and those employed by
the Oceanic decometer provide a set for comparison of relative DCI risk. Listed below in Table 14 are the NDLs and
corresponding risks, rn, for the profile, assuming ascent and descent rates of 60 f sw�min (no safety stops). Haldane and
RGBM estimates vary little for these cases, and only the phase estimates are included.

Table 14. Risk Estimates For Various NDLs.

USN PADI NAUI Oceanic
d � f sw� tn �min� tn �min� tn �min� tn �min�

35 310 (4.3%) 205 (2.0%) 181 (1.3%)
40 200 (3.1%) 140 (1.5%) 130 (1.4%) 137 (1.5%)
50 100 (2.1%) 80 (1.1%) 80 (1.1%) 80 (1.1%)
60 60 (1.7%) 55 (1.4%) 55 (1.4%) 57 (1.5%)
70 50 (2.0%) 40 (1.2%) 45 (1.3%) 40 (1.2%)
80 40 (2.1%) 30 (1.3%) 35 (1.5%) 30 (1.3%)
90 30 (2.1%) 25 (1.5%) 25 (1.5%) 24 (1.4%)

100 25 (2.1%) 20 (1.3%) 22 (1.4%) 19 (1.2%)
110 20 (2.2%) 13 (1.1%) 15 (1.2%) 16 (1.3%)
120 15 (2.0%) 13 (1.3%) 12 (1.2%) 13 (1.3%)
130 10 (1.7%) 10 (1.7%) 8 (1.3%) 10 (1.7%)

Risks are internally consistent across NDLs at each depth, and agree with the US Navy assessments in Table 2. Greatest
underlying and binomial risks occur in the USN shallow exposures. The PADI, NAUI, and Oceanic risks are all less
than 2% for this set, thus binomial risks for single DCI incidence are less than 0.02%. PADI and NAUI have reported
that field risks (p) across all exposures are less than 0.001%, so considering their enviable track record of diving safety,
our estimates are liberal. Oceanic risk estimates track as the PADI and NAUI risks, again, very safely.

Next, the analysis is extended to profiles with varying ascent and descent rates, safety stops, and repetitive sequence.
Table 15 lists nominal profiles (recreational) for various depths, exposure and travel times, and safety stops at 5 msw.
DCI estimates, r , are tabulated for both dissolved gas supersaturation ratio (ZHL) and bubble number excess (RGBM)
risk functions.

Table 15. Dissolved And Separated Phase Risk Estimates For Nominal Profiles.
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profile descent rate ascent rate safety stop r r
�depth�min� �msw�min� �msw�min� �depth�min� RGBM ZHL

14 msw/38 min 18 9 5 msw/3 min .0034 .0062
19 msw/38 min 18 9 5 msw/3 min .0095 .0110
37 msw/17 min 18 9 5 msw/3 min .0165 .0151

18 msw/31 min 18 9 5 msw/3 min .0063 .0072
18 9 .0088 .0084
18 18 .0101 .0135
18 18 5 msw/3 min .0069 .0084

17 msw/32 min 18 9 5 msw/3 min
SI 176 min

13 msw/37 min 18 9 5 msw/3 min
SI 174 min

23 msw/17 min 18 18 5 msw/3 min .0127 .0232

The ZHL (Buhlmann) NDLs and staging regimens are widespread across decompression meters presently, and are good
representation for Haldane risk analysis. The RGBM is newer and more modern (and more physically correct), and is
coming online in decometers and associated software. For recreational exposures, the RGBM collapses to a Haldane
dissolved gas algorithm. This is reflected in the risk estimates above, where estimates for both models differ little.

Simple comments hold for the analyzed profile risks. The maximum relative risk is 0.0232 for the 3 dive repetitive
sequence according to the Haldane dissolved risk estimator. This translates to .2% binomial risk, which is comparable to
the maximum NDL risk for the PADI, NAUI, and Oceanic NDLs. Again, this type of dive profile is common, practiced
daily on liveaboards, and benign. According to Gilliam, the absolute incidence rate for this type of diving is less than
0.02%. Again, our figures overestimate risk.

Effects of slower ascent rates and safety stops are noticeable at the 0.25% to 0.5% level in relative surfacing risk.
Safety stops at 5 m for 3 min lower relative risk an average of 0.3%, while reducing the ascent rate from 18 msw�min to
9 msw�min reduces relative risk an average of 0.35%.

Staging, NDLs, and other contraints imposed by decometer algorithms are entirely consistent with acceptable and
safe recreational diving protocols. The estimated absolute risk associated across all ZHL NDLs and diver staging
regimens analyzed herein is less than .232%, and is probably much less in actual practice. That is, we use p� 0�006,
and much evidence suggests p� 0�0001, some ten times safer.

Implicit in such formulations of risk tables are the assumptions that a decompression stress is more likely to produce
symptoms if it is sustained in time, and that large numbers of separate events may culminate in the same probability after
time integration. Though individual schedule segments may not be replicated enough to offer total statistical validation,
categories of predicted safety can always be grouped within subsets of corroborating data. Since the method is general,
any model parameter or meaningful index, properly normalized, can be applied to decompression data, and the full
power of statistical methods employed to quantify overall risk. While powerful, such statistical methods are neither
deterministic nor mechanistic, and cannot predict on first principles. But as a means to table fabrication with quoted
risk, such approaches offer attractive pathways for analysis.

Validation procedures for schedules and tables can be quantified by a set of procedures based on statistical decom-
pression analysis:

1. select or construct a measure of decompression risk, or a probabilistic model;

2. evaluate as many dives as possible, and especially those dives similar in exposure time, depth, and environmental
factors;

3. conduct limited testing if no data is available;

4. apply the model to the data using maximum likelihood;

5. construct appropriate schedules or tables using whatever incidence of decompression sickness is acceptable;
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6. release and then collect profile statistics for final validation and tuning.

Questions of what risk is acceptable to the diver vary. Sport and research divers would probably opt for very small
risk (0.01% or less), while military and commercial divers might live with higher risk (1%), considering the nearness of
medical attention in general. Many factors influence these two populations, but fitness and acclimatization levels would
probably differ considerably across them. While such factors are difficult to fold into any table exercise or analysis, the
simple fact that human subjects in dive experiments exhibit higher incidences during testing phases certainly helps to
lower the actual incidence rate in the field, noted by Bennett and Lanphier.

Reduced Gradient Bubble Model Validation And Testing
Models need validation and testing. Often, strict chamber tests are not possible, economically nor otherwise, and

algorithms employ alternate benchmarks and regimens to underscore viability. The following are some supporting the
RGBM phase model and (released) nitrox, heliox, and trimix diving tables:

1. counterterror and countermeasures (LANL) exercises have used the RGBM (full up iterative deep stop version)
for a number of years, logging some 327 dives on mixed gases (trimix, heliox, nitrox) without incidence of DCI –
35% were deco dives, and 25% were repets (no deco) with at least 2 hr SIs, and in the forward direction (deepest
dives first);

2. NAUI Technical Diving has been diving the deep stop version for the past 2 yrs, some estimated 200 dives, on
mixed gases down to 250 f sw, without a single DCI hit. Some 15 divers, Fall of 1999, in France used the RGBM
to make 2 mixed gas dives a day, without mishap, in cold water and rough seas;

3. modified RGBM recreational algorithms (Haldane imbedded with bubble reduction factors limiting reverse pro-
file, repetitive, and multiday diving), as coded into SUUNTO, ABYSS, Cochrane decometers, lower an already
low DCI incidence rate of approximately 1/10,000 or less. More RGBM decompression meters, including mixed
gases, are in the works (3 not named at this time);

4. a cadre of divers and instructors in mountainous New Mexico, Utah, and Colorado have been diving the modified
(Haldane imbedded again) RGBM at altitude, an estimated 350 dives, without peril. Again, not surprising since
the altitude RGBM is slightly more conservative than the usual Cross correction used routinely up to about 8,000
ft elevation, and with estimated DCI incidence less than 1/10,000;

5. within decometer implementations of the RGBM, not a single DCI hit has been reported in nonstop and multi-
diving categories, beyond 3,000 dives or more, up to now;

6. extreme chamber tests for mixed gas RGBM are in the works, and less stressful exposures will be addressed
shortly – extreme here means 300 f swand beyond;

7. probabilistic decompression analysis of some selected RGBM profiles, calibrated against similar calculations of
the same profiles by Duke, help validate the RGBM on a computational basis , suggesting that the RGBM has no
more theoretical risk than other bubble or dissolved gas models (Weathersby, Vann, Gerth methodology at USN
and Duke).

8. all divers and instructors using RGBM decometers, tables, or NET software have been advised to report individual
profiles to DAN Project Dive Exploration (Vann, Gerth, Denoble and many others at Duke).

9. ABYSS is a NET sotware package that offers the modified RGBM (folded over the Buhlmann ZHL) and soon
the full up, deep stop version for any gas mixture, has a fairly large contingent of tech divers already using the
RGBM and has not received any reports of DCI.

10. outside of proprietary (commercial) and RGBM Tables, mixed gas tables are a smorgasboard of no longer ap-
plicable Haldane dynamics and discretionary stop insertions, as witnessed by the collective comments of a very
vocal and extremely competent, experienced technical diving community.

Because DCI is binomially distributed in incidence probability, many trials are often needed (or other close profiles)
to fully validate any model at the 1% level. Additionally, full validation requires DCI incidences, the higher the number,
the better, contrary to desired dive outcomes.
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Oxygen Dose And Toxicity
Decompression sickness could be avoided by breathing just pure oxygen. And the usage of higher concentrations

of oxygen in breathing mixtures not only facilitates metabolic function, but also aids in the washout of inert gases such
as nitrogen and helium. Despite the beneficial effects of breathing oxygen at higher concentrations, oxygen proves
to be toxic in excessive amounts, and over cumulative time intervals. Too little oxygen is equally detrimental to the
diver. As discussed, limits to oxygen partial pressures in breathing mixtures range, 0.16 atm to 1.6 atm, roughly, but
symptoms of hypoxia and hyperoxia are dose dependent. Or, in other words, symptom occurences depend on oxygen
partial pressures and exposure times, just like inert gas decompression sickness. The mixed gas diver needs to pay
attention not only to helium and nitrogen in staged decompression, but also cumulative oxygen exposure over the dive,
and possibe underexposure on oxygen depleted breathing mixtures.

The neurotoxic actions of high pressure oxygen are thought to relate directly to biochemical oxidation of enzymes,
either those linked to membrane permeability or metabolic pathways. The list below is not exhaustive, but includes the
following mechanisms:

1. the inability of blood to remove carbon dioxide from tissue when hemoglobin is oxygen saturated;

2. inhibition of enzymes and coenzymes by lipid peroxides;

3. increased concentration of chemical free radicals which attack cells:

4. oxidation of membranes and structural deterioration reducing electrical permeability for neuron activation:

5. direct oxygen attack on smooth muscle fibres;

6. oxygen induced vasoconstriction in arterioles;

7. elevation of brain temperature due to lack of replacement of oxygen by carbopn dioxide in hemoglobin;

8. and, simple chemical kinetic redistribution of cellular carbon dioxide and oxygen with high surrounding oxygen
tensions.

Fortunately for the diver, there are ways to avoid complications of hyperoxia. Careful attention to dose (depth-time)
limitations for oxygen exposures is needed.

Despite the multiplicity and complexity of the above, limits for safe oxygen exposure are reasonably defined. Table
16 below lists NOAA oxygen exposure time limits, tx, for corresponding oxygen partial pressures, pO2 . Below 0.5 atm,
oxygen toxicity is not really a problem.

43



Table 16. Oxygen Dose-Time Limits

oxygen partial pressure oxygen time limit oxygen tolerance (OTU)
pO2 �atm� tx �min� ϒ�min�

1.6 45 87
1.5 120 213
1.4 150 244
1.3 180 266
1.2 210 278
1.1 240 279
1.0 300 300
0.9 360 299
0.8 450 295
0.7 570 266
0.6 720 189

The data in Table 16 is easily fitted to a dose time curve, using least squares, yielding,

tx � exp

�
3�0� pO2

�36

�
� 4160 exp��2�77pO2� (193)

or, equivalently,
pO2 � 3�0� �36 ln �tx� (194)

in the same units, that is pO2 and tx in atm and min respectively. The last column tabulates an exposure dose, ϒ, for
divers, called the oxygen tolerance unit (OTU), developed by Lambertsen and coworkers at the University of Pennsyl-
vania. Formally, the oxygen toxicity, ϒ, is given by,

ϒ�

�
pO2 �0�5

0�5

�0�83

t (195)

and can be cumulatively applied to diving exposures according to the following prescriptions:

1. maintain single dive OTUs below 750 min on the liberal side, or allow for 550 min of that as possible full DCI
recompression treatment on the conservative side;

2. maintain repetitive total dive OTUs below 300 min.

The expression is applied to each and all segments of a dive, and summed accordingly for total OTUs, and then bench-
marked against the 750 min or 300 min rough rule. The 750 min and 300 min OTU rules are not cast in stone in the
diving community, and 10% to 25% variations are common, in both conservative and liberal directions.

For exceptional and multiple exposures, the USN and University of Pennslyvania suggest the limits summarized in
Table 17, where for multiple exposures, N, and segment times, t xn,

Tx �
N

∑
n�1

txn (196)
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Table 17. Oxygen Exceptional Exposure Time Limits

oxygen partial pressure single exposure multiple exposures
pO2 �atm� tx �min� Tx �min�

2.0 30
1.9 45
1.8 60
1.7 75
1.6 120 15
1.5 150 180
1.4 180 180
1.3 240 210
1.2 270 240
1.1 300 270
0.9 360 360
0.8 450 450
0.7 570 570
0.6 720 720

Note the severe reduction in multiple oxygen exposure time at 1.6 atm in Table 17. For this reason, technical divers
generally restrict mixed gas diving exposures to pO2 � 1�6 atmthroughout any sequence of dives.

There are many ways to measure oxygen, with devices called oxygen analyzers. They are employed in chemi-
cal plants and refineries, hyperbaric chambers, intensive care units, and nurseries. The paramagnetic analyzer is very
accurate, and relies on oxygen molecular response to a magnetic field in displacing inert gases from collection cham-
bers. Thermal conductivity analyzers differentiate oxygen and nitrogen conduction properties in tracking temperatures
in thermistors, with difference in temperatures proportional to the oxygen concentration. Magnetic wind analyzers
combine properties of paramagnetic and thermal analyzers. Polarographic analyzers measure oxygen concentration
by resistance changes across permeable oxygen membranes. Galvanic cell analyzers are microfuel cells, consuming
oxygen on touch and generating a small current proportional to the amount of oxygen consumed. In all cases, analyzer
response is linear in oxygen concentration.

Although it is tempting to avoid problems of oxygen toxicity by maintaining oxygen partial pressures, p O2 , far below
toxic limits, this is not beneficial to inert gas elimination (free or dissolved state). Higher levels of inspired oxygen, thus
correspondingly lower levels of inert gases, are advantageous in minimizing inert gas buildup and maximizing inert gas
washout. Coupled to narcotic potency of helium and nitrogen, and molecular diffusion rates, balancing and optimizing
breathing mixtures with decompression requirements is truly a complex and careful technical diving exercise.
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